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Abstract. We consider a Potts model on a Bethe lattice with competing nearest-neighbour
J and next-nearest-neighbour interactions Jp. The phase diagram of this model was studied
by Ganikhodjaev et al. In this paper we investigate the problem of phase transition for the
considered model and show that for some parameter values of the model there is phase transition.

1. Introduction
The Ising model with competing interactions on the Bethe lattice (or the Cayley tree; see [1] for
terminology) has received widespread attention by many authors recently since the appearance
of the Vannimenus model [2], [3],[4],[5] etc. A Potts model just as an Ising model with competing
interactions has recently been studied extensively because of the appearance of nontrivial
magnetic ordering ( see [6],[7], [8] and reference therein). The Bethe lattice, that is, an infinite
connected tree whose sites have the same coordination number, has a thin structure without
closed paths but with infinite dimensionality. By introducing competing interactions between
Ising or Potts spin variables, assigned to each site, we enable the system to present a very rich
phase diagram with many modulated phases. The Vannimenus model [2], that is, the Ising model
on a Bethe lattice of coordination number q = 3, with ferromagnetic nearest-neighbor interaction
and with an antiferromagnetic next-nearest-neighbor interaction (then latter restricted to the
sites belonging to the same branch) is the counterpart of the anisotropic next-nearest-neighbor
Ising model (ANNNI) model defined on regular lattices [9]. The three states Potts model on
the Bethe lattice tree of coordination number q = 3 with nearest-neighbor and next-nearest-
neighbor interactions (latter restricted to the sites belonging to the same branch) was considered
by Ganikhodjaev et al [6]. The Hamiltonian of this model is

H(σ) = −J
∑
〈x,y〉∈L

δσ(x)σ(y) − Jp
∑
〉x̃,y〈

δσ(x)σ(y), (1)

where J, Jp ∈ R are coupling constants with J > 0, Jp < 0 and 〈x, y〉 stands for nearest-
neighbours vertices and 〉x̃, y〈 stands for next-nearest-neighbor interaction restricted to the sites
belonging to the same branch.
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As usual, one can introduce the notions of the conditional Gibbs measure, translation-invariant
and periodic limiting Gibbs distributions (see [10],[11],[12]). In order to produce the recurrent
equations, we consider the relation of the partition function on Vn to the partition function on
subsets of Vn−1 (see details in [6].) Let Z(n)(i1, i0, i2) be a partition function on Vn where the spin
in the root x0 is i0 and the two spins in the proceeding x1 and x2 are i1 and i2, respectively. As
shown in [6] one can select only five independent variables Z(n)(1, 1, 1), Z(n)(2, 1, 2), Z(n)(1, 2, 1),
Z(n)(2, 2, 2), Z(n)(3, 2, 3) and with the introduction of new variables

u
(n)
1 =

√
Z(n)(1, 1, 1), u

(n)
2 =

√
Z(n)(2, 1, 2),

u
(n)
3 =

√
Z(n)(1, 2, 1), u

(n)
4 =

√
Z(n)(2, 2, 2),

u
(n)
5 =

√
Z(n)(3, 2, 3),

straightforward calculations (see more detail [6]) show that

u
(n+1)
1 = a(bu

(n)
1 + 2u

(n)
2 )2,

u
(n+1)
2 = (bu

(n)
3 + u

(n)
4 + u

(n)
5 )2,

u
(n+1)
3 = (u

(n)
1 + (b+ 1)u

(n)
2 )2,

u
(n+1)
4 = a(u

(n)
3 + bu

(n)
4 + u

(n)
5 )2,

u
(n+1)
5 = (u

(n)
3 + u

(n)
4 + u

(n)
5 )2,

(2)

and the total partition function is given in terms of (ui) by

Z(n) = (u
(n)
1 + 2u

(n)
2 )2 + 2(u

(n)
3 + u

(n)
4 + u

(n)
5 )2, (3)

where β is the inverse temperature and a = exp(βJ), b = exp(βJp). We note that, in the
paramagnetic phase (high symmetry phase), u1 = u4 and u2 = u3 = u5. For discussing the
phase diagram, the following choice of reduced variables is convenient:

x = 2u2+u3+u5
u1+u4

, y1 = u1−u4
u1+u4

,

y2 = u2−u3
u1+u4

, y3 = u2−u5
u1+u4

.
(4)

The variable x is just a measure of the frustration of the nearest-neighbour bonds and is not an
order parameter like y1, y2 and y3. In this case the basic equations have following form:

x′ = 1
2aD [P (y1, y2, y3) + ((b+ 1)x+ 2− y1 − by2 − y3)2],

y′1 = 2
D (b+ x)(by1 + y2 + y3),

y′2 = − 1
aD [y1 + by2 − y3][2 + (b+ 1)x− (b− 1)(y2 − y3)],

y′3 = 1
aD (b− 1)(y3 − y2)[2 + (b+ 1)x− 2y1 − (b+ 1)(y2 + y3)],

(5)

where

D = (b+ x)2 + (by1 + y2 + y3)
2,

P (y1, y2, y3) = 3y21 + (4b2 − 4b+ 3)y22 + (3b2 − 4b+ 4)y23 + 2(2b+ 1)y1y2 + 2(b+ 2)y1y3

− (2b2 − 7b+ 2)y2y3.

In the next section we consider the problem of phase transition for considered model (1).
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2. Translation-invariant Gibbs Measures:Phase Transitions
To investigate the phase transitions of considered model we consider the dynamic system (2)
and study its limiting behaviour. Let u = (u1, u2, u3, u4, u5) ∈ R5

+ and the dynamic system
F : R5

+ → R5
+ is defined by

u′1 = a (bu1 + 2u2)
2

u′2 = (bu3 + u4 + u5)
2

u′3 = (u1 + (b+ 1)u2)
2

u′4 = a (u3 + bu4 + u5)
2

u′5 = (u3 + u4 + bu5)
2 ,

(6)

Then the recurrent equations (2) one can rewrite as u(n+1) = F (u(n)), n ≥ 0. Let us
describe fixed points of this dynamical system, i.e., solutions of equation F (u) = u. Denote
Fix(F ) = {u : F (u) = u}.

As noted in [6], in the paramagnetic phase (high symmetry phase), we have u1 = u4 and
u2 = u3 = u5. One can see that a set M = {u = (u1, u2, u3, u4, u5) ∈ R5

+ : u1 = u4, u2 = u3 =
u5} is an invariant set of the transformation F . On this set the reduced variables x, y1, y2, y3
(4) have the following form x = 2u2

u1
, y1 ≡ 0, y2 ≡ 0, y3 ≡ 0 and the system of equations (4) is

reduced to single equation

x′ =
1

2a

(
(b+ 1)x+ 2

b+ x

)2

. (7)

In this case the measure of the frustration x(n) one can consider as

x(n) = 2

√
Z(n)(1, 1, 1)

Z(n)(2, 1, 2)

and since a conditional Cibbs measure of the cylinder set {x0 = i0, x
1 = i1, x

2 = i2} is defined
as

µ(n)({x0 = i0, x
1 = i1, x

2 = i2}) =
Z(n)(i0, i1, i2)

Z(n)

one can conclude that corresponding limit Gibbs measure is fully determined by fixed points of
recurrent equation (7). If we define f : R+ → R+ by

f(x) =

(
(b+ 1)x+ 2

b+ x

)2

. (8)

then f is bounded and thus the curve y = f(x) must intersect the line y = 2ax, i.e., the recurrent
equation (7) has a fixed points (see [13]). Note that if there is more than one positive fixed point,
then there is more than one translation-invariant paramagnetic Cibbs measure corresponding to
these fixed points. It is thus worthwhile to examine how many solutions the equation f(x) = 2ax
has.
Lemma 1 The equation (

(b+ 1)x+ 2

b+ x

)2

= 2ax (9)

(with x ≥ 0, a > 0, b > 0) has one solution if b <
√
73−1
2 . If b >

√
73−1
2 , then there exist ν1(b) and

ν2(b) with 0 < ν1(b) < ν2(b) such that the equation (9) has three solutions if ν1(b) < 2a < ν2(b)
and has two solutions if either 2a = ν1(b) or 2a = ν2(b). In fact

νi(b) =
1

xi

(
(b+ 1)xi + 2

b+ xi

)2

,
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where x1 and x2 are the solutions of the equation

(b+ 1)x2 − (b2 + b− 6)x+ 2b = 0.

Proof As before let

f(x) =

(
(b+ 1)x+ 2

b+ x

)2

;

thus we have

f ′(x) = 2(b− 1)(b+ 2)
[(b+ 1)x+ 2]

(x+ b)3
,

f ′′(x) = 2(b− 1)(b+ 2)
[b2 + b− 6− 2(b+ 1)x]

(x+ b)4
.

In particular if b ≤ 1 then f is decreasing and there can only be one solution of f(x) = 2ax;

thus we can restrict ourselves to the case b > 1. We have that f is convex for x < b2+b−6
2(b+1) and

is concave for x > b2+b−6
2(b+1) . If b2+b−6

2(b+1) < 0 there can be only be one solution of f(x) = 2ax, i.e.,

b < 2. Thus there are at most three solutions to f(x) = 2ax if b2+b−6
2(b+1) > 0, i.e., b > 2. In fact it

is quite easy to see that there is more than one solution if and only if there is more than one
solution to the equation xf ′(x) = f(x), which is the same as

(b+ 1)x2 − (b2 + b− 6)x+ 2b = 0.

The discriminant of this equation is equal to (b−1)(b+2)(b2 + b−18) and it has two positive

roots x1 and x2 if b >
√
73−1
2 . This completes the proof.

Denote

Tc =
Jp

ln
√
73−1
2

,

where Jp > 0. Using this Lemma 1 we obtain following
Theorem 1 Let Jp > 0. Then if T ≥ Tc the model has unique paramagnetic phase and if T < Tc
and the conditions of the Lemma 1 are satisfied then for the model there are three paramagnetic
translation-invariant Gibbs measures, i.e., there is phase transition.

3. Periodic Gibbs Measures: Phase Transitions
To describe all phases of considered model, one iterates the recurrence relations (5) and observes
their behavior after a large number of iterations. In the simplest situation a fixed point
(x∗, y∗1, y

∗
2, y
∗
3) is reached. It corresponds to a paramagnetic phase if y∗1 = 0, y∗2 = 0, y∗3 = 0

or to a ferromagnetic phase if y∗1, y
∗
2, y
∗
3 6= 0. Secondary, the system may be periodic with period

p, where case p = 2 corresponds to antiferromagnetic phase and case p = 4 corresponds to
so-called antiphase, that denoted < 2 > for compactness. Finally, the system may remain
aperiodic. The distinction between a truly aperiodic case and one with a very long period is
difficult to make numerically. Below we discuss existing of paramagnetic phases with period
p = 2. Using numerical method in [6] presented new phase, namely, paramodulated phase. In
this section we prove existence of such phases and study the phase transition problem. Let us
first describe periodic points of the equation F (F (u)) = u with p = 2 on the set M. In this case
this equation can be reduced to following equation

f(f(x)) = x. (10)
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To find periodic solutions we consider the equation

f(f(x))− x
f(x)− x

= 0.

Simple but tedious algebra gives that the last equation is equivalent to the following

[(b+ 1)2 + 2ab]2x2 + 4a[4a2b3 +a(b4 + 2b3 + 9b2 + 8b−4) + 2(b+ 1)3]x+ 4(ab2 + b+ 1)2 = 0 (11)

It is evident that the equationAx2+Bx+C = 0 has two positive solutions if b4+2b3+9b2+8b−4 <
0, i.e., 0 < b < 0.3498, i.e., Jp < 0. To prove the existing of two positive roots we need to show
that for some values of parameters a and b we have B < 0 and discriminant D = B2−4AC > 0,
where

B = 4a[4a2b3 + a(b4 + 2b3 + 9b2 + 8b− 4) + 2(b+ 1)3],

D = 16[4a3b2 + (b4 + 4b3 + 9b2 + 8b− 4)a2 + (b3 + 2b2 + 4b+ 1)a+ (b+ 1)2]

[4a3b2 + (b4 + 9b2 + 8b− 4)a2 − (b3 + 3b2 − 2)a− (b+ 1)2].

Consider the quadratic equation (with respect to a) B = 0, i.e.,

4a2b3 + a(b4 + 2b3 + 9b2 + 8b− 4) + 2(b+ 1)3 = 0.

with discriminant ∆B = (b + 1)2(b − 1)2(b4 + 2b3 − 11b2 − 12b + 4). For 0 < b < 0.2702 we
have ∆B > 0 and two positive roots a1(b) and a2(b). Then for any 0 < b < 0.2702 (since
0 < b < 0.3498) and a with a1 < a < a2 we have B < 0. Similarly one can prove that for any
0 < b < 0.2702 there are a∗1(b) and a∗2(b) such that for a with a∗1(b) < a < a∗2(b) discriminant
D > 0. In fact, equalizing to zero each factor of discriminant D, we consider two equations (with
respect to a)

4a3b2 + (b4 + 4b3 + 9b2 + 8b− 4)a2 + (b3 + 2b2 + 4b+ 1)a+ (b+ 1)2 = 0 (12)

and
4a3b2 + (b4 + 9b2 + 8b− 4)a2 − (b3 + 3b2 − 2)a− (b+ 1)2 = 0. (13)

Since 0 < b < 0.2702 first equation has two positive roots ā1(b) and ā2(b), such that for any a
with ā1(b) < a < ā2(b), first factor is negative. Second equation has single positive root a(b)
such that for any a with 0 < a < a(b) second factor also is negative. Simple but tedious calculus
shows that for any b in (0, 0.2702) there are ã1 and ã2 such that for any a in (ã1, ã2) we have
B < 0 and D > 0. Thus we have proved the following
Lemma 2 The equation (10) has no solution if b ≥ 0.2702 and if b < 0.2702 then there exist
ã1, ã2 such that the equation has two positive solutions if ã1 < a < ã2.
Let

T (2)
c =

Jp
ln 0.2702

,

where Jp < 0. From Lemma 2 we get the following

Theorem 2 Let Jp < 0. Then if T ≥ T
(2)
c the model has no paramagnetic phase with period

2 and if T < T
(2)
c and the conditions of the Lemma 2 are satisfied then for the model there are

two paramagnetic Gibbs measures with period 2, i.e., there is phase transition.
Remark The paramagnetic Gibbs measure with period 2 was found in [6] numerically and called
paramodulated phase.
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4. Conclusion
It is proved the existence of phase transition for translation-invariant paramagnetic Gibbs
measures when Jp > 0 and for periodic with period 2 paramagnetic Gibbs measures when
Jp < 0. These results fully consistent with numerical results in [6].
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