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Abstract. On a Cayley tree of arbitrary order k we consider two different Potts models with
competing nearest-neighbour interactions J1 and next-nearest-neighbour interactions Jp and
Jo, where coupling Jp corresponds to interaction of spins belonging to the same branch of the
tree (prolonged) and coupling Jo corresponds to interaction of spins belonging to the same
shell of the tree (one-level) and find for each model in addition to the expected paramagnetic,
ferromagnetic and antiferromagnetic phases, an intermediate range of coupling values where the
local magnetization has chaotic oscillatory glass-like behaviour. We also show that the ranges
corresponding two models are different.

1. Introduction
Consideration of spin models with multispin interactions has proved to be fruitful in many fields
of physics, ranging from the determination of phase diagrams in metallic alloys and exhibition
of new types of phase transition, to site percolation. Systems exhibiting spatially modulated
structures, commensurate or incommensurate with the underlying lattice, are of current interest
in condensed matter physics [1]. Among the idealized systems for modulated ordering, the axial
next-nearest-neighbour Ising (ANNNI) model, originally introduced by Elliot [2] to describe the
sinusoidal magnetic structure of Erbium, and the chiral Potts model, introduced by Ostlund
[3] and Huse [4] in connection with monolayers adsorbed on rectangular substrates, have been
studied extensively by a variety of techniques. A particularly interesting and powerful method
is the study of modulated phases through the measure-preserving map generated by the mean-
field equations, as applied by Bak [5] and Jensen and Bak [6] to the ANNNI model. The main
drawback of the method lies in the fact that thermodynamic solutions correspond to stationary
but unstable orbits. However, when these models are defined on a Cayley tree ( or on a the Bethe
lattice; see [7] for terminology), as in the case of the Ising model with competing interactions
examined by Vannimenus [8], it turns out that physically interesting solutions correspond to the
attractors of the mapping. This simplifies the numerical work considerably, and detailed study
of the whole phase diagram becomes feasible. Apart from the intrinsic interest attached to the
study of models on trees, it is possible to argue that the results obtained on trees provide a
useful guide to the more involved study of their counterparts on crystal lattices.

The ANNNI model, which consists of an Ising model with nearest-neighbour interactions
augmented by competing next-nearest-neighbour couplings acting parallel to a single axis
direction, is perhaps the simplest nontrivial model displaying a rich phase diagram with a Lifshitz
point and many spatially modulated phases. There has been a considerable theoretical effort to
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obtain the structure of the global phase diagram of the ANNNI model in the T−p space, where T
is temperature and p = −J2/J1 is the ratio between the competing exchange interactions. On the
basis of numerical mean-field calculations, Bak and von Boehm [9] suggested the existence of an
infinite succession of commensurate phases, the so-called devil’s staircase, at low temperatures.
This mean-field picture has been supported by low-temperature series expansions performed by
Fisher and Selke [11]. At the paramagnetic-modulated boundary analytic mean-field calculations
show that the critical wave number varies continuously and vanishes at the Lifshitz point.

A phase diagram of a model describes a morphology of phases, stability of phases, transitions
from one phase to another and corresponding transition lines. The Cayley tree is not a realistic
lattice; however, its amazing topology makes the exact calculation of various quantities possible.
For many problems the solution on a tree is much simpler than on a regular lattice and is
equivalent to the standard Bethe-Peierls theory [20]. On the Cayley tree one can consider two
type of next-nearest-neighbours: prolonged and one-level next-nearest-neighbours (definitions
see below). In the case of the Ising model with competing nearest-neighbor interactions J
and prolonged next-nearest-neighbour interactions Jp Vannimenus [8] was able to find new
modulated phases, in addition to the expected paramagnetic and ferromagnetic ones. From
this result follows that Ising model with competing interactions on a Cayley tree is real interest
since it has many similarities with models on periodic lattices. In fact, it has many common
features with them, in particular the existence of a modulated phase, and shows no sign of
pathological behavior - at least no more than mean-field theories of similar systems [8]. Moreover
a detailed study of its properties was carried out with essentially exact results, using rather
simple numerical methods.

This suggest that more complicated models should be studied on trees, with the hope to
discover new phases or unusual types of behavior. The important point is that statistical
mechanics on trees involve nonlinear recursion equations and are naturally connected to the
rich world of dynamical systems, a world presently under intense investigation [8].

The Potts model (with q ≥ 2 spin values ) was introduced as a generalization of the Ising
model [26]. At present the Potts model encompasses a number of problems in statistical physics
and lattice theory (see for example [27]). A Potts model just as an Ising model with competing
interactions has recently been studied extensively because of the appearance of nontrivial
magnetic orderings ( see [8], [12],[13],[15],[17],[18],[19],[16],[21],[22],[23],
[28],[29] and references therein). The Potts model with competing interactions J1 and prolonged
next-nearest neighbours interactions Jp on Cayley tree of second order have been studied in
detail in [19], and Potts model that include also interaction of one-level next-nearest-neighbour
interaction Jo have been studied in [28].
In this paper we define a single-trunk Cayley tree, produce the recursion equations for model
with competing interactions on the Cayley tree and for the same model on the single-trunk
Cayley tree, and show how to reduce the recursion equations on Cayley tree to the simpler
recursion equations on the single-trunk Cayley tree. Note that this approach is mathematical
justification only of the method developed in [8] and later generalized in [12]. We will consider
also the symmetry group of the corresponding model [10].
The aim of this paper is to extend the results of [28] to the Potts model with competing
interactions on a Cayley tree of arbitrary order k and to clarify the role of the order k. The
paper has been organized in the following way. In Section 2, the model Hamiltonian is discussed.
In Section 3, the recursion equations are defined. Section 4 is devoted to the discussion of the
phase diagram features. Finally, the conclusions are given in Section 5.
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2. The Model Hamiltonian
2.1. Cayley Tree
A Cayley tree Γk of order k ≥ 1 (or the Bethe lattice; see [7] for terminology) is an infinite tree,
i.e., a graph without cycles with exactly k + 1 edges issuing from each vertex. Let denote the
Cayley tree as Γk = (V,Λ), where V is the set of vertices of Γk, Λ is the set of edges of Γk. Two
vertices x and y, x, y ∈ V are called nearest-neighbors if there exists an edge l ∈ Λ connecting
them, which is denoted by l =< x, y >. The distance d(x, y), x, y ∈ V , on the Cayley tree Γk, is
the number of edges in the shortest path from x to y. For a fixed x0 ∈ V we set

Wn = {x ∈ V |d(x, x0) = n}, Vn = {x ∈ V |d(x, x0) ≤ n}

and Ln denotes the set of edges in Vn. The fixed vertex x0 is called the 0-th level and the
vertices in Wn are called the n-th level. For the sake of simplicity we put |x| = d(x, x0),
x ∈ V . Two vertices x, y ∈ V are called the next-nearest-neighbours if d(x, y) = 2. The next-
nearest-neighbour vertices x and y are called prolonged next-nearest-neighbours if |x| 6= |y| and
is denoted by ˜> x, y <. The next-nearest-neighbour vertices x, y ∈ V that are not prolonged are
called one-level next-nearest-neighbours since |x| = |y| and are denoted by ¯> x, y <.

We write x ≺ y if the path from x0 to y goes through x. We call the vertex y a direct
successor of x, if y � x and x, y are nearest neighbours. The set of the direct successors of x is
denoted by S(x), i.e., if x ∈Wn , then

S(x) = {yi ∈Wn+1|d(x, yi) = 1, i = 1, · · · , k}.

We observe that for any vertex x 6= x0, x has k direct successors and x0 has k + 1.
The collection S(x) = {y1, · · · , yk} we will call one-level k tuple of neighbours. Note that if

k = 2 then S(x) is a one-level next-nearest-neighbours.
Below we will consider a semi-infinite Cayley tree Γk+ of k-th order, i.e. an infinite graph

without cycles with k + 1 edges issuing from each vertex except for x0 which has only k edges.
In this case |S(x)| = k for any x ∈ V. Let < x0, x >= l ∈ L be an edge of semi-infinite Cayley
tree Γk+.

Definition 2.1 The infinite subtree Γk+(l) = (V l, Ll) is called a single-trunk Cayley tree, if from

vertex x0 a single edge l emanates and from any other vertex x ∈ V l, x 6= x0 exactly k+ 1 edges
emanate.
Let W1 = {x1, x2, · · ·xk} and < x0, x1 >= l1, < x0, x2 >= l2, · · · < x0, xk >= lk be k edges
emanating from x0. It is evident that semi-infinite Cayley tree Γk+ splits into k components -

k single-trunk Cayley trees Γk+(li), i = 1, 2 · · · , k. Let V li is the set of vertices of single-trunk

Cayley tree Γk+(li) and V li
n = Vn ∩ V li is the set of vertices x ∈ V li with d(xo, x) ≤ n.

2.2. The Models
Let Γk+ be a semi-finite Cayley tree of order k. In addition to nearest-neighbours interaction J1

and prolonged next-nearest -neighbours interaction Jp we consider also interactions of sites in
the set S(x) = {y1, · · · , yk} of direct successors for any x ∈ V. Here one can introduce two type
interactions:
1) jointly interaction of all sites in S(x), called one-level k-tuple interaction ;
2) binary interaction of any two sites in S(x) = {y1, · · · , yk}, called one-level next-nearest neigh-
bours interaction.
For the Potts model with spin values in Φ = {1, 2, 3}, i.e., the spin variables σ(x), x ∈ V assume
the values {1, 2, 3}, the relevant Hamiltonians with competing nearest-neighbor interactions J1,
prolonged next-nearest-neighbor interactions Jp and one-level k-tuple neighbours or one-level
next-nearest neighbors interaction Jo have the forms:
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1) Model with one-level k-tuple neighbours interactions

H(σ) = −Jo
∑

yi∈S(x)

δσ(y1)σ(y2)···σ(yk) − Jp
∑
>̃x,y<

δσ(x)σ(y) − J1

∑
<x,y>

δσ(x)σ(y), (1)

2) Model with one-level next-nearest neighbor interactions

H(σ) = −Jo
∑

yi,yj∈S(x):i6=j
δσ(yi)σ(yj) − Jp

∑
>̃x,y<

δσ(x)σ(y) − J1

∑
<x,y>

δσ(x)σ(y), (2)

where J0, Jp, J1 ∈ R are coupling constant, δ in second and third sum in (1) and all sums in
(2) is the usual Kronecker symbol and δ in first sum in (1) is the generalized Kronecker symbol,
that is defined as follow:

δσ(y1)σ(y2)···σ(yq) =

{
1 if σ(y1) = σ(y2) = · · · = σ(yk)
0 otherwise.

Note that for k = 2 generalized Kroneker’s symbol coincides with usual one and one-level 2-
tuple of neighbours coincide with one-level next-nearest neighbours. These models recover that
in [19] for k = 2 with Jo = 0 and in [28] for k = 2 with Jo 6= 0 and they coincide if Jo = 0.
The generalized Kroneker’s symbol was introduced in [24]. The Ising model with one-level k-
tuple interactions was considered in [23] and Ising model with one-level next-nearest-neighbours
interactions was considered in [30].

2.3. Conditional Gibbs measures with symmetries
Recall that in the case of the Ising model with competing interactions examined by Vannimenus
[8], it turns out that physically interesting solutions correspond to the attractors of the recurrence
relations, where initial conditions chosen randomly. The main drawback of the method lies in
the fact that thermodynamic solutions correspond to stationary but unstable orbits. In this
paper we produce recurrence relations fixing boundary configuration σ̄(V \ Λ).
Let Λ be a finite subset of V. We will denote by σ(Λ) the restriction of a configuration
σ : V → Φ = {1, 2, 3} to Λ. Let σ̄(V \ Λ) be a fixed boundary configuration. As usual, one can
introduce the notions of total energy H(σ(Λ)|σ̄(V \ Λ)) of configuration σ(Λ) under boundary
condition σ̄(V \Λ) and partition function ZΛ(σ̄(V \Λ)) in volume Λ under boundary condition
σ̄(V \ Λ) that is defined as

ZΛ(σ̄(V \ Λ)) =
∑

σ(Λ)∈Ω(Λ)

exp(− 1

kBT
H(σ(Λ)| σ̄(V \ Λ))), (3)

where Ω(Λ) is the set of all configurations in volume Λ, kB is Boltzmann constant and T is the
absolute temperature. Then conditional Gibbs measure µΛ of a configuration σ(Λ) is defined as

µΛ(σ(Λ)| σ̄(V \ Λ)) =
exp(−βH(σ(Λ)| σ̄(V \ Λ))

ZΛ(σ̄(V \ Λ))

We consider the configuration σ(Vn), the partition function ZVn(σ̄(V \ Vn)) and conditional
Gibbs measure µVn(σ(Vn)|σ̄(V \ Vn)) in volume Vn and for brevity denote them as σn, Z

(n) and
µn respectively. Let S3 be a group of all permutations of a set Φ = {1, 2, 3}. Definition 2.2
For any permutation π ∈ S3 let us define transformation Tπ : Ω→ Ω by the following way: for
any σ ∈ Ω assume Tπσ(x) = Tπ(σ(x)) for any x ∈ V.
It is evident the following Proposition.
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Proposition 2.1 The Hamiltonians (1) and (2) are S3 invariant, i.e., for any π ∈ S3 we have
H(Tπσ) = H(σ) for any σ ∈ Ω.
In order to produce the recurrence equations, we consider the relation of the partition function
on Vn+1 to the partition function on subsets of Vn. Given the initial condition σ(x0) = i0 on
V0 = {x0}, where x0 is the root of the Cayley tree, the recurrence equations indicate how their
influence propagates down the tree. Below we consider following partition functions.

Let Z
(n)
i be a partition function on Vn with the spin i in the root x0, i = 1, 2, 3, i.e.,

Z
(n)
i =

∑
σn∈Ωn: σn(x0)=i

exp(−βH(σn| σ̄(V \ Vn))), (4)

with
Z(n) = Z

(n)
1 + Z

(n)
2 + Z

(n)
3 ,

where n = 0, 1, 2, · · · .
Let

σS =

(
σ(y1), σ(y2), · · · , σ(yk)

σ(x0)

)
be a configuration on the set S = x0 ∪ S(x0) and Ω(S) be the set of all such configurations.
Assume

Z(n)(σS) = Z(n)
(
σ(y1), σ(y2), · · · , σ(yk)

σ(x0)

)
be the partition function on Vn with fixed configuration σS on V1. There are a priori 3k+1

different partition functions Z(n)(σS) and the partition function Z(n) in volume Vn can be
written as follows:

Z(n) =
∑

σS∈Ω(S)

Z(n)(σS). (5)

Lastly let Z(n)(i, j) be a partition function on the single-trunk Cayley tree V l
n with the

configuration (i, j) on an edge l =< x0, y >, where y ∈W1 and i, j = 1, 2, 3.
For each model there exists corresponding correlations between the partition functions

Z(n)(i, j) and Z(n)(σS).
1) For first model with one-level k-tuple interactions

Z(n)(σS) = exp

(
J0

kBT
δσ(y1)σ(y2)···σ(yk)

)
·
k∏
i=1

Z(n)(σ(x0), σ(yi)); (6)

2) For second model with one-level next-nearest neighbor interactions

Z(n)(σS) = exp

 J0

kBT

∑
i<j

δσ(yi)σ(yj)

 · k∏
i=1

Z(n)(σ(x0), σ(yi)). (7)

Assume that

a = exp

(
Jo

kBkT

)
; b = exp

(
Jp
kBT

)
; c = exp

(
J1

kBT

)
;

where kB is Boltzmann constant and T is the absolute temperature.
We may assume that the different branches are equivalent, as is usual done for models on tree.
Let us fix boundary configuration σ̄n on V \ Vn as follows: σ̄n(x) ≡ i for any x ∈ V \ Vn, where
i = 1, 2, 3. It is evident the following Proposition.
Proposition 2.2 For fixed boundary configuration σ(x) ≡ 1 for any x ∈ V \Vn, the Hamiltonian
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H(σ(Λ)|σ̄(V \ Λ)) is S∗3 invariant, where S∗3 = {π ∈ S3 : π(1) = 1} is subgroup of group S3.
Corollary 2.1 The partition functions {Z(n)(i, j) : i, j = 1, 2, 3} satisfy following relations:

Z(n)(1, 2) = Z(n)(1, 3);

Z(n)(2, 1) = Z(n)(3, 1);

Z(n)(2, 2) = Z(n)(3, 3);

Z(n)(2, 3) = Z(n)(3, 2);

(8)

i.e., the following 5 variables

Z(n)(1, 1);Z(n)(1, 2);Z(n)(2, 1);Z(n)(2, 2);Z(n)(2, 3)

are independent. Then from (6) and (7) follow that we can select only 5 independent variables
from 3k+1 partition functions, the same for both models (1) and (2), namely:

Z(n)(1, 1, 1, · · · , 1), Z(n)(1, 2, 2, · · · , 2), Z(n)(2, 1, 1, · · · , 1),

Z(n)(2, 2, 2, · · · , 2), Z(n)(2, 3, 3, · · · , 3).

We note that, in the paramagnetic phase (high symmetry phase, i,e., symmetry with respect to
S3 ) we have

Z(n)(1, 1) = Z(n)(2, 2);

and
Z(n)(1, 2) = Z(n)(2, 1) = Z(n)(2, 3)

and respectively
Z(n)(1, 1, 1, · · · , 1) = Z(n)(2, 2, 2, · · · , 2)

and
Z(n)(1, 2, 2, · · · , 2) = Z(n)(2, 1, 1, · · · , 1) = Z(n)(2, 3, 3, · · · , 3).

3. Basic Equations
In order to set up our basic equations in a recurrence scheme relating the partition function of
an n- generation tree to the partition functions of its subsystems, we should take into account
the partial partition functions for all the possible configurations of the spins in two successive
generations. Below we produce the recurrent equations relating the partition functions Z(n)(i, j)
for Hamiltonian considered on the single-trunk Cayley tree.

3.1. First Model
Firstly we consider Potts model (1) with competing prolong next-nearest-neighbour interactions,
nearest-neighbour interactions and one level k-tuple neighbour interactions. We introduce 5 new
variables

u
(n)
1 = q

√
Z(n)(1, 1, 1, · · · , 1) = a

[
Z(n) (1, 1)

]
u

(n)
2 = k

√
Z(n)(1, 2, 2, · · · , 2) = a

[
Z(n) (1, 2)

]
u

(n)
3 = k

√
Z(n)(2, 1, 1, · · · , 1) = a

[
Z(n) (2, 1)

]
u

(n)
4 = k

√
Z(n)(2, 2, 2, . . . , 2) = a

[
Z(n) (2, 2)

]
u

(n)
5 = k

√
Z(n)(2, 3, 3, . . . , 3) = a

[
Z(n) (2, 3)

]

2012 iCAST: Contemporary Mathematics, Mathematical Physics and their Applications IOP Publishing
Journal of Physics: Conference Series 435 (2013) 012033 doi:10.1088/1742-6596/435/1/012033

6



where k is the order of the Cayley tree.
Let Z(n)(i0, i1, i2, · · · , ik) be a partition function and let m1 be the number of spins {1} and m2

be the number of spins {2} on first level W1. Then we have

Z(n) (1, i1, i2, · · · , ik) = a−k
(
um1

1 uk−m1
2

)
Z(n) (2, i1, i2, · · · , ik) = a−k

(
um1

3 um2
4 u

q−(m1+m2)
5

)
One gets the following system of recurrent equations through direct calculation:

u
(n+1)
1 = a1−kc

[(
ak − 1

) (
bkuk1 + 2uk2

)
+ (bu1 + 2u2)k

]
,

u
(n+1)
2 = a1−k

[(
ak − 1

) (
bkuk3 + uk4 + uk5

)
+ (bu3 + u4 + u5)k

]
,

u
(n+1)
3 = a1−k

[(
ak − 1

) (
uk1 +

(
bk + 1

)
uk2

)
+ (u1 + (b+ 1)u2)k

]
,

u
(n+1)
4 = a1−kc

[(
ak − 1

) (
uk3 + bku

k
4 + uk5

)
+ (u3 + bu4 + u5)k

]
,

u
(n+1)
5 = a1−k

[(
ak − 1

) (
uk3 + uk4 + bku

k
5

)
+ (u3 + u4 + bu5)k

]
.

(9)

The total partition function is given in terms of (ui) by

Z(n) =
(
ak − 1

) [
uk1 + 2

(
uk2 + uk3 + uk4 + uk5

)]
+ (u1 + 2u2)k + 2(u3 + u4 + u5)k.

For discussing the phase diagram, the following choice of reduced variables is convenient (see
(8)):

x(n) =
2u

(n)
2 +u

(n)
3 +u

(n)
5

u
(n)
1 +u

(n)
4

= Z(n)(1,2)+Z(n)(1,3)+Z(n)(2,1)+Z(n)(2,3)

Z(n)(1,1)+Z(n)(2,2)

y
(n)
1 =

u
(n)
1 −u

(n)
4

u
(n)
1 +u

(n)
4

= Z(n)(1,1)−Z(n)(3,3)

Z(n)(1,1)+Z(n)(2,2)

y
(n)
2 =

u
(n)
2 −u

(n)
3

u
(n)
1 +u

(n)
4

= Z(n)(1,3)−Z(n)(3,1)

Z(n)(1,1)+Z(n)(2,2)

y
(n)
3 =

u
(n)
2 −u

(n)
5

u
(n)
1 +u

(n)
4

= Z(n)(1,2)−Z(n)(3,2)

Z(n)(1,1)+Z(n)(2,2)

(10)

As shown above, in the paramagnetic phase (high symmetry phase, i,e., symmetry with respect
to S3) we have

u
(n)
1 = u

(n)
4 ;

and
u

(n)
2 = u

(n)
3 = u

(n)
5 .

The variable x is just a measure of the frustration of the nearest-neighbour bonds and is not an
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order parameter like y1, y2 and y3. The relations (6) now have following form:

x′ = 1cD[2{(ak − 1)[bk(x− 3y2 + y3)k + 2k(1− y1)k + (x+ y2 + y3)k]
+[(b+ 1)x+ (1− 3b)y2 + (b− 3)y3 + 2(1− y1)]k}
+{(ak − 1)[(2(1 + y1))k + (bk + 1)(x+ y2 + y3)k]
+[2(1 + y1) + (b+ 1)(x+ y2 + y3)]k}
+{(ak − 1)[(x− 3y2 + y3)k + (2(1− y1))k + (b(x+ y2 − 3y3))k]
+[(1 + b)x+ (b− 3)y2 + (1− 3b)y3 + 2(1− y1)]k}];

y′1 = 1D[{(ak − 1)[bk(1 + y1)k + 2k+1(x+ y2 + y3)k] + [b(1 + y1) + x+ y2 + y3]k}
−{(ak − 1)[(x− 3y2 + y3)k + 2kbk(1− y1)k + (x+ y2 − 3y3)k]
+[2(x− y2 − y3) + b(1− y1)]k}];

y′2 = 1cD[{(ak − 1)[bk(x− 3y2 + y3)k + 2k(1− y1)k + (x+ y2 + y3)k]
+[(b+ 1)x+ (1− 3b)y2 + (b− 3)y3 + 2(1− y1)]k}
−{(ak − 1)[2k(1 + y1)k + (bk + 1)(x+ y2 + y3)]

+[2(1 + y1) + (b+ 1)(x+ y2 + y3)]k}]
y′3 = 1cD[{(ak − 1)[bk(x− 3y2 + y3)k + 2k(1− y1)k + (x+ y2 + y3)k]

+[(b+ 1)x+ (1− 3b)y2 + (b− 3)y3 + 2(1− y1)]k}
−{(ak − 1)[(x− 3y2 + y3)k + 2k(1− y1)k + bk(x+ y2 + y3)k]
+[(b+ 1)x+ (b− 3)y2 + (1− 3b)y3 + 2(1− y1)]k}]

(11)

where

D = {(ak − 1)[bk(1 + y1)k + 2k+1(x+ y2 + y3)k] + [b(1 + y1) + x+ y2 + y3]k}
+{(ak − 1)[(x− 3y2 + y3)k + (2b(1− y1))k + (x+ y2 − 3y3)k]

+[2(x− y2 − y3) + b(1− y1)]k}]

3.2. Second Model
Now we consider Potts model (2) with competing prolong next-nearest-neighbour interactions,
nearest-neighbour interactions and one level next nearest neighbour interactions. Over again,
we select only five variables with introducing new variables, then we have

u
(n)
1 = k

√
Z(n) (1, 1, 1, . . . , 1) = a

k−1
2

[
Z(n) (1, 1)

]
,

u
(n)
2 = k

√
Z(n) (1, 2, 2, . . . , 2) = a

k−1
2

[
Z(n) (1, 2)

]
,

u
(n)
3 = k

√
Z(n) (2, 1, 1, . . . , 1) = a

k−1
2

[
Z(n) (2, 1)

]
,

u
(n)
4 = k

√
Z(n) (2, 2, 2, . . . , 2) = a

k−1
2

[
Z(n) (2, 2)

]
,

u
(n)
5 = k

√
Z(n) (2, 3, 3, . . . , 3) = a

k−1
2

[
Z(n) (2, 3)

]
.

In this case assume

a = exp

(
J0

kBT

)
, b = exp

(
Jp
kBT

)
, c = exp

(
J1

kBT

)
.

As above let m1 be the number of spins {1} and m2 be the number of spins {2} on first level
W1, then we we have

Z(n) (1, i1, i2, . . . , ik) = A
[
um1

1 uk−m1
2

]
Z(n) (2, i1, i2, . . . , ik) = A

[
um1

3 um2
4 u

k−(m1+m2)
5

]
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Z(n) (3, i1, i2, . . . , ik) = A
[
um1

3 u
k−(m1+m2)
4 um2

5

]
where A = am1

2+m2
2+m1m2−k(m1+m2).

Next, we produce the following recurrence system through a direct calculation:

u
′
1 = a

k−1
2 c

 k∑
i=0

(
k
i

)(
a−ibu1

)k−i
ui2

 i∑
j=0

(
k
i

)(
a−j

)i−j
u
′
2 = a

k−1
2

 k∑
i=0

(
k
i

)(
a−ibu3

)k−i i∑
j=0

(
i
j

)(
a−ju4

)i−j
uj5


u
′
3 = a

k−1
2

 k∑
i=0

(
k
i

)(
a−iu1

)k−i
ui2

 i∑
j=0

(
i
j

)(
a−j

)i−j
bj


u
′
4 = a

k−1
2 c

 k∑
i=0

(
k
i

)(
a−iu3

)k−i i∑
j=0

(
i
j

)(
a−ju5

)i−j
(bu4)j


u
′
5 = a

k−1
2

 k∑
i=0

(
k
i

)(
a−iu3

)k−i i∑
j=0

(
i
j

)(
a−ju4

)i−j
(bu5)j


Then, total partition function is given in terms of (ui) by

Z(n) =
k∑
i=0

(
k
i

)(
a−i
)k−i  i∑

j=0

(
i
j

)(
a−j

)i−j [
uk−i1 ui2 + uk−i3

(
uj4u

i−j
5 + ui−j4 uj5

)]
Choosing the same reduced variables as above we produce following recurrent equations (11′):

x
′

=

∑k

i=0

(
k
i

)
(a−i)

k−i

(∑i

j=0

(
i
j

)
(a−j)

i−j
A1(i,j,x,y1,y2,y3)

)
c
∑k

i=0

(
k
i

)
(a−i)k−i

(∑i

j=0

(
i
j

)
(a−j)i−jD(i,j,x,y1,y2,y3)

)

y
′
1 =

∑k

i=0

(
k
i

)
(a−i)

k−i

(∑i

j=0

(
i
j

)
(a−j)

i−j
A2(i,j,x,y1,y2,y3)

)
∑k

i=0

(
k
i

)
(a−i)k−i

(∑i

j=0

(
i
j

)
(a−j)i−jD(i,j,x,y1,y2,y3)

)

y
′
2 =

∑k

i=0

(
k
i

)
(a−i)

k−i

(∑i

j=0

(
i
j

)
(a−j)

i−j
A3(i,j,x,y1,y2,y3)

)
c
∑k

i=0

(
k
i

)
(a−i)k−i

(∑i

j=0

(
i
j

)
(a−j)i−jD(i,j,x,y1,y2,y3)

)

y
′
3 =

∑k

i=0

(
k
i

)
(a−i)

k−i

(∑i

j=0

(
i
j

)
(a−j)

i−j
A4(i,j,x,y1,y2,y3)

)
c
∑k

i=0

(
k
i

)
(a−i)k−i

(∑i

j=0

(
i
j

)
(a−j)i−jD(i,j,x,y1,y2,y3)

)

(12)

where
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A1(i, j, x, y1, y2, y3) = 2[b(x− 3y2 + y3)]k−i[2(1− y1)]i−j(x+ y2 − 3y3)j

+bj [2(1 + y1)]k−i(x+ y2 + y3)i

+(x− 3y2 + y3)k−i[2(1− y1)]i−j [b(x+ y2 − 3y3)]j ;
A2(i, j, x, y1, y2, y3) = [2b(1 + y1)]k−i(x+ y2 + y3)i

−[2b(1− y1)]j(x− 3y2 + y3)k−i(x+ y2 − 3y3)i−j ;
A3(i, j, x, y1, y2, y3) = [b(x− 3y2 + y3)]k−i[2(1− y1)]i−j(x+ y2 − 3y3)j

−bj [2(1 + y1)]k−i(x+ y2 + y3)i;
A4(i, j, x, y1, y2, y3) = [b(x− 3y2 + y3)]k−i[2(1− y1)]i−j(x+ y2 − 3y3)j

−(x− 3y2 + y3)k−i[2(1− y1)]i−j [b(x+ y2 − 3y3)]j

(13)

and

D(i, j, x, y1, y2, y3) = [2b(1 + y1)]k−i(x+ y2 + y3)i

+[2b(1− y1)]j(x− 3y2 + y3)k−i(x+ y2 − 3y3)i−j .

3.3. The Average Magnetization
In order to investigate the phase diagram we have to look at local properties, namely the local
magnetization or the magnetization of the root x0. The average magnetization m for the n-th
generation is given by,

m =
〈
σ(x0)

〉
n

=
1 · Z(n)

1 + 2 · Z(n)
2 + 3 · Z(n)

3

Z(n)
= 2−

(
Z

(n)
1 − Z(n)

3

Z(n)

)

Since the form of spins of the Potts model is unessential one can replace the set of spin values
{1,2,3} by the centered set {-1,0,1} [31] and then we have

m̃ =
〈
σ(x0)

〉
n

= −
(
Z

(n)
1 − Z(n)

3

Z(n)

)

Below we will consider the average magnetization m̃ to study the wavevectors.
Average magnetization for first model is given by

m̃ =
1

E
[(ak − 1){2−k((x− 3y2 + y3)k + (x+ y2 − 3y3)k − 2(x+ y2 + y3)k)}

+(1− y1)k − (1 + y1)k + [1 + x− (y1 + y2 + y3)]k − [1 + x+ (y1 + y2 + y3)]k],

where

E = [(ak − 1){(1 + y1)k + 2(1− y1)k + 21−k[((x+ y2 + y3)k + (x− 3y2 + y3)k

+(x+ y2 − 3y3)k]}+ (1 + x+ y1 + y2 + y3)k + 2(1 + x− y1 − y2 − y3)k]

and average magnetization for second model is given by

m̃ = −
2k
∑k
i=0

(
k
i

)(
2ak−i

)k−i [∑i
j=0

(
i
j

) (
a−j

)i−j
M (i, j, x, y1, y2, y3)

]
∑k
i=0

(
k
i

)
(a−i)k−i

[∑i
j=0

(
i
j

)
(a−j)i−jN (i, j, x, y1, y2, y3)

]
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where

M(i, j, x, y1, y2, y3) = (1 + y1)k−i(x+ y2 + y3)i

−22i−k−j(x− 3y2 + y3)k−i(1− y1)i−j(x+ y2 − 3y3)j

and

N(i, j, x, y1, y2, y3) = 2k−i(1 + y1)k−i(x+ y2 + y3)i

+2j(x− 3y2 + y3)k−i(1− y1)j(x+ y2 − 3y3)i−j

+2i−j(x− 3y2 + y3)k−i(1− y1)i−j(x+ y2 − 3y3)j

4. Morphology of phase diagrams
It is convenient to know the broad features of the phase diagram before discussing the different
transitions in more detail. Below we will consider phase diagram for k = 3. This can be achieved
numerically in a straightforward fashion. The recursion relations (11) for the first model and (12)
for the second model provide us the numerically exact phase diagram in (−Jp/J1, J0/J1, T/J1)
space. Let β = −Jp/J1, α = T/J1 and γ = J0/J1 , by first model and second model, for some
fixed values of , starting from initial conditions

x(1) =
2bk + ck + 1

c (ckbk + 1)
, y

(1)
1 =

ckbk − 1

ckbk + 1
, y

(1)
2 =

bk − ck

c (ckbk + 1)
, y

(1)
3 =

bk − 1

c (ckbk + 1)

with the parameters a = exp
(
(kα)−1γ

)
, b = exp

(
−α−1β

)
, c = exp

(
α−1

)
and for

second model’s as with the parameters a = exp
(
α−1γ

)
, b = exp

(
−α−1β

)
, c = exp

(
α−1

)
corresponding to boundary condition σ̄ ≡ 1, one iterates the recurrence relations (11) and (12),
we observe their behaviour after a large number of iterations. In the simplest situation a fixed
point (x∗, y∗1, y

∗
2, y
∗
3) is reached. It corresponds to paramagnetic phase if y∗1 = 0, y∗2 = 0, y∗3 = 0

to a ferromagnetic phase if y∗1, y
∗
2, y
∗
3 6= 0.

The system may be periodic with period p, where case p = 2 correspond to antiferromagnetic
phase and case p = 4 correspond to so-called antiphase that denoted < 2 > for compactness.
Finally, the system may remain aperiodic. The distinction between a truly aperiodic case and
one with a very long period is difficult to make numerically. Below we consider periodic phase
with period p where p ≤ 4. All periodic phase with period p > 4 and aperiodic phase we will
consider as modulated phase.

The resultant phase diagram on the plane (β, α) for both models with some fixed values of γ
and k are shown in Figs. 1 and 3. (Here: P – paramagnetic phase, F – ferromagnetic phase, AF –
antiferromagnetic phase, P3 – phase with period 3, <2> – antiphase, and M – modulated phase)
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One can observe the significance of order k with nonzero J0 of Cayley tree in Figs. 1 – 6
where the models with competing interactions’ (1) and (2) phase diagram is illustrated. Here,
the systems for both models (11) and (12) was iterated for order k = 3 and 4 with γ = ±0.1,
γ = ±1 and γ = ±10. In Fig. 1, consider both models with k = 3 and γ = ±0.1, contain in
these diagrams are six phases which are ferromagnetic, paramagnetic, antiferromagnetic, phase
of period 3, antiphase and modulated phases.
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The phase diagrams are described in terms of its quadrant. When these phase diagrams are
observed, it can be seen that ferromagnetic, paramagnetic, modulated and antiphase phases are
situated in the first quadrant (−Jp/J1 > 0, T/J1 > 0). On the other hand, the second quadrant
(−Jp/J1 < 0, T/J1 > 0) holds phase diagrams consisting of ferromagnetic and paramagnetic
phases. Moving on, the third quadrant (−Jp/J1 < 0, T/J1 < 0) is observed to have four phases
namely paramagnetic, phase of period 3, modulated and antiphase phases, except for the case
in Fig. 2(d), the phase of period 3 vanish in the this quadrant. Finally in quadrant four
(−Jp/J1 > 0, T/J1 < 0), the diagrams contain paramagnetic and antiferromagnetic with a small
island consists of different phases.
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Order of Cayley tree with nonzero one-level next nearest neighbour interactions has played
a vital role in the phase diagram on the both models (1) and (2) with competing interactions’
result. Since the phase diagram was produced in the case k > 2, difference on the non-existing
of paramodulated phase is observed. This is because this said phase exists in the case of Cayley
tree order 2 (Ganikhodjaev et. al [19]). Also, the phase of antiphase exists in the third quadrant
when a comparison is done with the case of Cayley tree order 2.
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The phase diagrams in Figs. (4) – (5) were produced with different order k and γ = ±10 give
difference in sizes of some phases. In Fig. 4(c), we found that the paramagnetic phase cover
all in first and second quadrant, as we consider J1 > 0 in the case of k = 3 and γ = −10 for
second model. Similar to Fig. 4(d), where the paramagnetic phase cover all in third and fourth
quadrant (J1 < 0) in the case of k = 3 and γ = 10. The results were different as we see in the
case for first model (see Fig. 4(a) and (b)).
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Looking on the fig. 5, one can see that the difference between both models occur in the case
of k = 4 and γ = 10, as phase of period 3 and antiphase not exist in the third quadrant of
our investigation area. (Figs. 5 (c) and (d)). Furthermore, in fig. 6, the phase diagrams were
produced with order k = 10 and γ = ±5 give an additional in sizes of some phases. In Fig.
6(c), we found that a small phase of antiferromagnetic occur in second quadrant for the second
model. Compare to first model, as in first quadrant for second model, we have more region of
paramagnetic and modulated phases (see Fig. 6(c)). In addition, one can see in Fig. 6(d), as
third quadrant of second model, same region of paramagnetic and modulated phases occur and
increase as compare to the first model.
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From the previously presented resultant phase diagrams, one can see that an investigation
on the behaviour of the system (11) and (12) can be performed by applying the numerical
approach. The systems were iterated in a large number before the detailed behaviour was
studied and visualized on the (α, β) space. As been discussed, differences in the values of k
results in differences and changes in the phase. Hence it is very difficult for us to study the
behaviour of the systems analytically. Yet, the transition line separating the phases is suggested
to be solved analytically. This can be done by linearizing both systems (11) and (12). Later
on, the linearized systems and analytical justification of the phase diagrams will be discussed in
more detailed.

5. Conclusion
In this paper, we study on relationship between two types of one-level neighbour interactions
of Potts model on arbitrary order Cayley tree. One can consider for one-level neighbour
interactions, k -tuple interactions and binary interactions. We study on the differences for both
types of model on Cayley tree order 3 and order 4 and order 10.

We have found the phase diagram of Potts model (1) and (2) and show that there consist of
six phases: ferromagnetic, paramagnetic, antiferromagnetic, period 3, antiphase and modulated
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phase. Moreover, we study on the difference of phase diagram for both types of model by fixing
γ equal to ±0.1,±1,±5, and ±10 . From considerations above, we can see that role of k rather
significant because there show the phase diagram quite different for each k in first and second
model.

Indeed the first and second model show us the difference, even though we only considering
two different way in competing the one level interactions. We can say that this two model are
differ to each other. They may give an unique significant to any physical phenomena occur.
Further investigation can be consider to understand how this difference attribute appear.
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