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Abstract. We use homoclinic orbits to find solutions of a dynamical system of the dipolar Bose
Einstein Condensate (BEC) in a deep optical lattice. The equation of motion is transformed to
a two-dimensional map and its homoclinic orbits are computed numerically. Each homoclinic
orbit leads to a different solution. These different solutions lead to different types of solitons.
We also analyse the stability of the solutions.

1. Introduction

It is well known that the dynamics of the Bose Einstein condensate (BEC) trapped in an optical
lattice can be described in tight-binding approximation by the discrete Nonlinear Schrödinger
Equation (DNLSE) [1, 2]. This model opens the way to study different aspects of the BEC
dynamics in an optical lattice, such as discrete solitons and nonlinear localized modes and
their stability and dynamics, modulational instability, superfluid-insulator transition, etc. [3].
Also recently the nonlinearity caused by long range dipole-dipole interaction attracts much
interest [4,5]. In this case the corresponding discrete model for dipolar BEC in an optical lattice
was introduced in the work [6], and further investigated in [7].

The equation for one dimensional optical lattice in the dimensionless variables was derived
in [8] and the nonlinear localized modes has been investigated in details by application of
numerical Newton-Raphson method. In this work, following the paper [9] we rather use
homoclinic orbits to find the localized solutions. The equation of motion is transformed to
a two-dimensional map and the homoclinic orbits for this map are computed numerically. Each
homoclinic orbit leads to a different solution. Also the linear stability of the found solutions is
investigated.

2. Two-Dimensional map

Consider the dipolar Bose Einstein Condensate (BEC) in a deep optical lattice. It is well known
that the governing equation for this system is given by [6–8]

i
d

dt
Φn + κ(Φn+1 + Φn−1) + q|Φn|2Φn + g

(

|Φn+1|2 + |Φn−1|2
)

Φn = 0, (1)
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where Φn is the complex field amplitude at the n-th site of the lattice, and κ is the linear
parameter, while q and g correspond to the nolinearity parameters. This equation, which is 1D
equation, has no exact analytical solution. Therefore, we use numerical methods and look for
localized stationary solutions of the form

Φn = uneiωt. (2)

If we substituted this form into the equation of motion (1), we get

q u3
n +

[

g
(

u2
n+1 + u2

n−1

)

− ω
]

un + (un+1 + un−1)κ = 0. (3)

It easy to show that this last equation has at most three fixed points

p0 = 0 and p± = ±
√

ω − 2κ

2g + q
. (4)

It is worth mentioning that p± should be real numbers.
With the transformation vn = un−1, Eq. (3) becomes a two-dimensional map















un+1 = 2
(ω − gv2

n)un − qu3
n − κvn

κ ±
√

κ2 + 4g(ω − gv2
n)u2

n − 4gqu4
n − 4gκunvn

,

vn+1 = un.

(5)

In what follows we restrict to the case when κ > 0 and to the map that corresponds to the
denominator κ +

√

κ2 + 4g(ω − gv2
n)u2

n − 4gqu4
n − 4gκunvn. Since un and vn are real numbers,

the map exists only when

κ2 + 4g(ω − gv2
n)u2

n − 4g(qu3
n + κvn)un ≥ 0. (6)

Some examples for the existence of the map are shown by the dashed area in Fig. 1.

Figure 1. The map exists only in the dashed area. The parameters used are: (left figure)
κ = 1, q = 1, g = 0.8, ω = 10 and (right figure) κ = 1, q = −0.6, g = 0.1 and ω = 0.1. These
homoclinic points lead to three different solitons.

To get some solutions of Eq. (1), we fellow the method described in [10] which is based on
homoclinic orbits. This method is briefly reviewed in the next section.
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3. Homoclinic orbits

There are two interesting manifolds for a two-dimensional map, stable manifold and unstable
manifold. The stable (unstable) manifold is the set of points that converge to a saddle fixed
point through forward (backward) iterations of the map. It is well know that a fixed point in
two-dimensional map is a saddle point if the two eigenvalues of its Jacobian, λ± , satisfy the
following inequalities

|λ−| < 1 and |λ+| > 1. (7)

The stable manifold corresponds to the eigenvalue λ−, while the unstable manifold corresponds
to the other eigenvalue λ+. An intersection point of the stable and unstable manifolds is called a
homoclinic point. The orbit that contains this point is called a homoclinic orbit. It is clear that
any point in a homoclinic orbit will converge to the saddle fixed point by forward and backward
iterations. Therefore, homoclinic orbits give stationary solutions for Eq. (1) with the form given
by Eq. (2) and converges to corresponding saddle fixed point.

Returning back to our map, Eq.(5). At the fixed point p0 , the Jacobian matrix of the map
for κ > 0 becomes

J =

[

ω′ −1
1 0

]

, (8)

where ω′ = ω/κ. The eigenvalues are then given by

λ± =
ω′ ±

√
ω′2 − 2

2
. (9)

One can show that the fixed point p0 is a saddle point if and only if |ω′| > 2. This condition
depends only on ratio ω/κ. However, for the two other fixed points, the condition for them to
be a saddle point depends on all parameters, κ, q, g and ω. As an example, one can show that
the two fixed points are saddle points for κ = 1, q = −0.6, g = 0.1, and ω = 0.1,

To compute the growth of the stable and unstable manifolds we use the search circle
algorithm [11,12]. This algorithm is implemented in the dynamical system software (DSTOOL)
[13].

Let us first look for some solutions of Eq. (1) with lim
n→±∞

un = 0. To find these solutions,

we simply identify homoclinic points correspond to the fixed point p0. That is, the intersection
of the stable and unstable manifolds for the saddle point p0. In Figure 2 we identify three
homoclinic points: dot marker at (2.16,2.24), triangle marker at (-0.66,0.66) and square marker
at (0.99,0.11). These homoclinic points leads to three different type of the solitons.

Let us choose for example the soliton obtained from the homoclinic point at (-0.66,0.66). We
found that this type of soliton doesn’t change much in the range 0 < κ < 1. Figure 3 shows the
soliton for κ = 1 and κ = 0.005.

Now, we will be interested in solitons with lim
n→±∞

un = p+. We choose the parameters κ = 1,

q = −0.6, g = 0.1 and ω = 0.1. As stated before, the point p+ is a saddle point. In Fig. 4
we identify three homoclinic points and their corresponding solitons. Next we plot the two
manifolds for different values of the parameter κ. One can see from this figure that decreasing κ
leads to disappearance of solitons. That is, we start with three homoclinic points and at κ = 0.2
we get two homoclinic points. By decreasing the value of κ, the two manifolds become tangent
to each other and finally they will be separated, see Fig. 5.
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Figure 2. Type of solitons found from the homoclinic points. The stable (blue color) and
unstable (red color) manifolds. There are three important homoclic points labeled by •, N and
�. The parameters used are: κ = 1, q = 1, g = 0.8, ω = 10.
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Figure 3. The parameters are q = 1, g = 0.8, ω = 10 and different values of κ: (left) 1 and
(right) 0.005.

In the next section, we study the linear stability of the solitons we found.

4. Stability analysis

Introducing a small perturbation to the solution of Eq. (1) as

Φ̄n(t) =
[

un(t) + ǫ
(

ane−iφt + bneiφ∗t
)]

eiωt. (10)

Inserting this last equation into Eq. (1), keeping linear terms with respect to ǫ, we obtain the
equation of motion in the rotating frame as a set of linear differential equations

ȧn(t) = − (gun−1un + κ) an−1 −
(

gu2
n−1 + 2qu2

n + gu2
n+1 − ω

)

an − (gunun+1 + κ) an+1
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Figure 4. (left figure) Type of solitons found from the homoclinic points. (right figure) The
stable (blue color) and unstable (red color) manifolds. Three important homoclic points labeled
by •, N and � are shown. The parameters used are κ = 1, q = −0.6, g = 0.1, ω = 0.1.
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Figure 5. The stable (blue color) and unstable (red color) manifolds. The parameters used are
q = −0.6, g = 0.1, ω = 0.1 and different values of κ: {1, 0.5, 0.2, 0.19}.

− (gun−1un) bn−1 −
(

qu2
n

)

bn − (gunun+1) bn+1, (11)
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ḃn(t) = (gun−1un + κ) bn−1 +
(

gu2
n−1 + 2qu2

n + gu2
n+1 − ω

)

bn + (gunun+1 + κ) bn+1

+ (gun−1un) an−1 +
(

qu2
n

)

an + (gunun+1) an+1. (12)

The eigenvalues of the linear system determine whether the solution is stable or not. Using
Eq. (12) we found that in Fig. 2 symmetric odd mode (square marker) is stable however, the
symmetric even mode (dot marker) is unstable. This is in accordance with [1]. In addition to
that we found that the third soliton (triangle marker) is also stable. However, all the solutions
in Fig. 4 are unstable.

5. Conclusion

The objective of this work was to obtain numerically the localized solutions of Eq. (1) using
the homoclinic orbits method.The existence of the different type solutonic solutions have been
shown and their linear stability have been checked.
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