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Abstract. A quadratic stochastic operator (in short QSO) is usually used to present the time
evolution of differing species in biology. Some QSO has been studied by Lotka and Volterra.
The general problem in the nonlinear operator theory is to study the behavior of operators.
This problem was not fully finished even for the quadratic stochastic operators. To study this
problem it was investigated several classes of such QSO. In this paper we study ξ(s)-QSO class
of operators. We study such kind of operators on 2D simplex. We first classify these ξ(s)-QSO
into 20 classes. Further, we investigate the dynamics of one class of such operators.

1. Introduction
A quadratic stochastic operator (in short QSO) is usually used to present the time evolution
of differing species in biology (see [7, 6]). Note that, in general, such operators are defined on
n−1-dimensional simplex of Rn. Some QSO has been studied by Lotka and Volterra [11]. Many
natural phenomena are being modeled by Lotka-Volterra (in short LV) quadratic systems. The
investigation of dynamical properties and modeling in various fields running from economy to
population dynamics have been using the LV system to be the source of analysis. The fascinating
applications of quadratic stochastic operators to population genetics were given in the book [7].
It describes a distribution of species in the next generation if the distribution of these species of
the current generation is given. In [1], it was given along self-contained exposition of the recent
achievements and open problems in the theory of quadratic stochastic operators. A general
problem in the nonlinear operator theory is to study the behavior of operators. This problem
was not fully finished even for the quadratic stochastic operators (for the simplest nonlinear
operators). The asymptotical behavior of the QSO (even) on small dimensional simplex is
complicated (see [5]). In order to solve this problem, many researchers always introduced a
certain class of quadratic operators and studied their behaviors: Volterra QSO [2, 10, 12], ℓ–
Volterra QSO [9], Non-Volterra QSO, Strictly non-Volterra QSO [13], F-QSO, Separable QSO,
Quadratic doubly stochastic operators and so on. For more information, one may refer to [1].
However, all these class of operators together would not cover all QSO. Therefore, there are
many classes of QSO which were not studied yet.

In this paper we are going to study ξ(s)-QSO class of operators which has been introduced
in [8]. This class of operators depend on a partition of the index set. In case of two dimensional
simplex, the index set has five possible partitions. In [8] it has been investigated ξ(s)-QSO
related to the point partition. In the present paper, we are going to describe and classify such
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operators generated by other three partitions. Further, we also investigate the dynamics of one
class of such operators.

2. Preliminaries
Recall that a quadratic stochastic operator (QSO) is a mapping of the simplex

Sn−1 = {x = (x1, x2, ..., xm)} ∈ Rm : xi ≥ 0,

m∑
i=1

xi = 1 (2.1)

into itself, of the form

V : xk =
m∑

i,j=1

Pi,j,kxixj , (2.2)

where Pi,j,k are coefficient of heredity, which satisfy the following conditions

Pi,j,k ≥ 0, Pi,j,k = Pj,i,k,
m∑

i,j=1

Pi,j,k = 1. (2.3)

Thus, each quadratic stochastic operator V can be uniquely defined by a cubic matrix P =(
Pi,j,k

)m
i,j,k=1

with conditions (2.3). For a given x(0) ∈ Sm−1 the trajectory {x(n)}, n = 0, 1, 2, ...

of x(0) under the action of QSO V is defined by x(n+1) = V (x(n)), where n = 0, 1, 2, .... By
W (x(0)) we denote the set of the limiting points of the trajectory. Since x(n) ⊂ Sm−1 and Sm−1

is compact, it follows that W (x(0)) ̸= ∅. Obviously, if W (x(0)) consists of a single point, then
the trajectory converges, and W (x(0)) is fixed point of QSO.

In order to introduce a new class QSO, we need some auxiliary notations.
Note that each element x ∈ Sm−1 is a probability distribution on I = {1, ...,m}. Therefore,

take two x = (x1, ..., xm) and y = (y1, ..., ym) from Sm−1. We say that x is equivalent to y if
xk = 0 ⇔ yk = 0.

Let us denote supp(x) = {i : xi ̸= 0}. We say that x is singular to y (x ⊥ y) if
supp(x) ∩ supp(x) = ϕ. Note that if x, y ∈ Sm−1 then x ⊥ y if and only if (x, y) = 0, here (·, ·)
stands usual inner product in Rm.

By P we denote the set of ordered pairs of I, i.e, P = {(i, j) : i, j ∈ I, i < j}. Let

ξ = {Ai}Ni=1 be a partition of P, i.e. Ai
∩

Aj = ∅,
∪N

i=1Ai = P.

Definition 2.1. A quadratic stochastic operator V given by (2.2),(2.3) is called ξ(s)-QSO if
the following conditions are satisfied:

(i) for each Ak and every (i, j), (u, v) ∈ Ak one has

(Pi,j,1, Pi,j,2, ..., Pi,j,m) ∼ (Pu,v,1, Pu,v,2, ..., Pu,v,m);

(ii) for every (i, j) ∈ Ak, (u, v) ∈ Al, (k ̸= l) one has

(Pi,j,1, Pi,j,2, ..., Pi,j,m)⊥(Pu,v,1, Pu,v,2, ..., Pu,v,m);

(iii) for every i, j ∈ I one has

(Pi,j,1, Pi,j,2, ..., Pi,j,m)⊥(Pu,v,1, Pu,v,2, ..., Pu,v,m).

2012 iCAST: Contemporary Mathematics, Mathematical Physics and their Applications IOP Publishing
Journal of Physics: Conference Series 435 (2013) 012003 doi:10.1088/1742-6596/435/1/012003

2



3. Classification of ξ(s)-QSO on 2Dsimplex
In this section we are going to study ξ(s)-QSO in two dimensional simplex, i.e. m = 3. In this
case, we have the following possible partitions

ξ1 = {{(1, 2)}, {(1, 3)}, {(2, 3)}}, |ξ1| = 3,

ξ2 = {{(1, 2)}, {(1, 3), (2, 3)}}, |ξ2| = 2,

ξ3 = {{(1, 3)}, {(1, 2), (2, 3)}}, |ξ3| = 2,

ξ4 = {{(2, 3)}, {(1, 2), (1, 3)}}, |ξ4| = 2,

ξ5 = {{(1, 2), (1, 3), (2, 3)}, |ξ5| = 1.

In [8] it has been investigated ξ(s)-QSO related to the partition ξ1. In the present paper we
are going to described all ξ(s)-QSO related to the partitions ξ2, ξ3 and ξ4. One can calculate
that there are 108 parmetrical ξ(s)-QSOs related to the said partitions.

Let us recall that two QSO V1, V2 are conjugate, if one can find a permutation π of {1, 2, 3}
such that one has πV1π

−1 = V2. Note that the ξ
(s)-QSO related partitions ξ3 and ξ4 are conjugate

to ξ(s)-QSO generated by the partition ξ2. More exactly, these operators are conjugate by means

of the permutation π1 =

(
x y z
y z x

)
. Therefore, below we are listing ξ(s)-QSO related to the

partition ξ2. Let us introduce some notations

h(x) = x(1− x), b = 1− a,

g(x, y, z;λ;α, β, γ) = x2 + 2λxαyβzγ , α, β, γ = {0, 1}.

Using these notation, we are ready to list the ξ(s)-QSOs which are the following ones:

V1 :

 x′ = x2 + 2ah(x)
y′ = y2 + 2bh(x)
z′ = g(z, x, y; 1; 1, 0, 1)

V2 :

 x′ = y2 + 2ah(x)
y′ = x2 + 2bh(x)
z′ = g(z, x, y; 1; 1, 0, 1)

V3 :

 x′ = z2 + 2ah(x)
y′ = y2 + 2bh(x)
z′ = g(x, y, z; 1; 0, 1, 1)

V4 :

 x′ = x2 + 2ah(x)
y′ = z2 + 2bh(x)
z′ = g(y, x, z; 1; 1, 0, 1)

V5 :

 x′ = y2 + 2ah(x)
y′ = z2 + 2bh(x)
z′ = g(x, y, z; 1; 0, 1, 1)

V6 :

 x′ = z2 + 2ah(x)
y′ = x2 + 2bh(x)
z′ = g(y, x, z; 1; 1, 0, 1)

V7 :

 x′ = g(x, y, z; 1; 0, 1, 1)
y′ = y2 + 2ah(x)
z′ = z2 + 2bh(x)

V8 :

 x′ = g(y, x, z; 1; 1, 0, 1)
y′ = x2 + 2ah(x)
z′ = z2 + 2bh(x)

V9 :

 x′ = g(z, x, y; 1; 1, 0, 1)
y′ = y2 + 2ah(x)
z′ = x2 + 2bh(x)

V10 :

 x′ = g(x, y, z; 1; 0, 1, 1)
y′ = z2 + 2ah(x)
z′ = y2 + 2bh(x)

V11 :

 x′ = g(y, x, z; 1; 1, 0, 1)
y′ = z2 + 2ah(x)
z′ = x2 + 2bh(x)

V12 :

 x′ = g(z, x, y; 1; 1, 0, 1)
y′ = x2 + 2ah(x)
z′ = y2 + 2bh(x)

V13 :

 x′ = x2 + 2ah(x)
y′ = g(y, x, z; 1; 1, 0, 1)
z′ = z2 + 2bh(x)

V14 :

 x′ = y2 + 2ah(x)
y′ = g(x, y, z; 1; 0, 1, 1)
z′ = z2 + 2bh(x)

V15 :

 x′ = z2 + 2ah(x)
y′ = g(y, x, z; 1; 1, 0, 1)
z′ = x2 + 2bh(x)
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V16 :

 x′ = x2 + 2ah(x)
y′ = g(z, x, y; 1; 1, 0, 1)
z′ = y2 + 2bh(x)

V17 :

 x′ = y2 + 2ah(x)
y′ = g(z, x, y; 1; 1, 0, 1)
z′ = x2 + 2bh(x)

V18 :

 x′ = z2 + 2ah(x)
y′ = g(x, y, z; 1; 0, 1, 1)
z′ = y2 + 2bh(x)

V19 :

 x′ = g(x, y, z; a; 0, 1, 1)
y′ = g(y, x, z; b; 1, 0, 1)
z′ = z2 + 2h(x)

V20 :

 x′ = g(y, x, z; a; 1, 0, 1)
y′ = g(x, y, z; b; 0, 1, 1)
z′ = z2 + 2h(x)

V21 :

 x′ = g(z, x, y; a; 1, 0, 1)
y′ = g(y, x, z; b; 1, 0, 1)
z′ = x2 + 2h(x)

V22 :

 x′ = g(x, y, z; a; 0, 1, 1)
y′ = g(z, x, y; b; 1, 0, 1)
z′ = y2 + 2h(x)

V23 :

 x′ = g(y, x, z; a; 1, 0, 1)
y′ = g(z, x, y; b; 1, 0, 1)
z′ = x2 + 2h(x)

V24 :

 x′ = g(z, x, y; a; 1, 0, 1)
y′ = g(x, y, z; b; 0, 1, 1)
z′ = y2 + 2h(x)

V25 :

 x′ = x2 + 2h(x)
y′ = g(y, x, z; a; 1, 0, 1)
z′ = g(z, x, y; b; 1, 0, 1)

V26 :

 x′ = y2 + 2h(x)
y′ = g(x, y, z; a; 0, 1, 1)
z′ = g(z, x, y; b; 1, 0, 1)

V27 :

 x′ = z2 + 2h(x)
y′ = g(y, x, z; a; 1, 0, 1)
z′ = g(x, y, z; b; 0, 1, 1)

V28 :

 x′ = x2 + 2h(x)
y′ = g(z, x, y; a; 1, 0, 1)
z′ = g(y, x, z; b; 1, 0, 1)

V29 :

 x′ = y2 + 2h(x)
y′ = g(z, x, y; a; 1, 0, 1)
z′ = g(x, y, z; b; 0, 1, 1)

V30 :

 x′ = z2 + 2h(x)
y′ = g(x, y, z; a; 0, 1, 1)
z′ = g(y, x, z; b; 1, 0, 1)

V31 :

 x′ = g(x, y, z; a; 0, 1, 1)
y′ = y2 + 2h(x)
z′ = g(z, x, y; b; 1, 0, 1)

V32 :

 x′ = g(y, x, z; a; 1, 0, 1)
y′ = x2 + 2h(x)
z′ = g(z, x, y; b; 1, 0, 1)

V33 :

 x′ = g(z, x, y; a; 1, 0, 1)
y′ = y2 + 2h(x)
z′ = g(x, y, z; b; 0, 1, 1)

V34 :

 x′ = g(x, y, z; a; 0, 1, 1)
y′ = z2 + 2h(x)
z′ = g(y, x, z; b; 1, 0, 1)

V35 :

 x′ = g(y, x, z; a; 1, 0, 1)
y′ = z2 + 2h(x)
z′ = g(x, y, z; b; 0, 1, 1)

V36 :

 x′ = g(z, x, y; a; 1, 0, 1)
y′ = x2 + 2h(x)
z′ = g(y, x, z; b; 1, 0, 1)

Theorem 3.1 All ξ(s)-QSO defined with respect to the partition ξ2 on 2D simplex are classified
into 20 non conjugate classes and they are listed below

K1 = {V1, V13}, K2 = {V2, V15}, K3 = {V3, V14}, K4 = {V4, V16}
K5 = {V5, V18}, K6 = {V6, V17}, K7 = {V7}, K8 = {V8, V9}
K9 = {V10}, K10 = {V11, V12}, K11 = {V19, V31}, K12 = {V20, V33}
K13 = {V21, V32}, K14 = {V22, V34}, K15 = {V23, V36}, K16 = {V24, V35}
K17 = {V25}, K18 = {V26, V27}, K19 = {V28}, K20 = {V29, V30}

Proof. We are going to classify the above given operators with respect to permutation

π3 =

(
x y z
x z y

)
. One can see that

π3 ◦ V1 ◦ π−1
3 = π3(x

2 + 2ax(1− x), z2 + 2(1− a)x(1− x), y(1− x+ z))

= (x2 + 2ax(1− x), y(1− x+ z), z2 + 2(1− a)x(1− x))

= V13

From π3 = π−1
3 , we infer that V1, V13 are in the same class, which is denoted by K1. The other

operators can be classified by the same way, so one gets the above given list. This completes
the proof.
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4. Dynamics of ξ(s)-QSO from the class K17

In this section, for the sake of simplicity, we are going to study dynamics of ξ(s) -QSO taken
from the class K17. Namely, we consider V25 which is given by

V25 :

 x′ = x2 + 2x(1− x)
y′ = z2 + 2ayx
z′ = y2 + 2(1− a)yz

(4.1)

where 0 < a < 1. In the sequel, by e1, e2, e3 we denote the vertices of the simplex S2. i.e.
e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

In what follows, for the sake of simplicity, by Va we denote V25.

Theorem 4.1 Let Va : S2 → S2 be a ξ(s)-QSO given by (4.1) Then the following statements
hold true:

(i) if a ̸= 1
2 then

1. Fix(Va) =

{
e1,

(
0,

3−2a−
√

4+(2a−1)2

2(1−2a) ,
−1−2a+

√
4+(2a−1)2

2(1−2a)

)}
2. Per((Va) = {e2, e3}

(ii) if a = 1
2 then

1. Fix(Va) =

{(
0, 12 ,

1
2

)}
.

2. Per(Va) = {x = 0}

(iii) Let x(0) = (x, y, z) ∈ S2 be an initial point with x = 0, then we have three cases:

1. if 0 < a < 1
2 , then W (x(0)) = {e3}

2. if 1
2 < a < 1, then W (x(0)) = {e2}

3. if a = 1
2 <, then W (x(0)) = {1− x(0)}

(iv) Let x(0) = (x, y, z) ∈ S2 be an initial point with x ̸= 0, then W (x(0)) = {e1}

Proof. (i) Assume that a ̸= 1/2. To find fixed points of Va, we need to solve the equation,
V x = x, namely

x2 + 2x(1− x) = x

z2 + 2ayz = y

y2 + 2(1− a)yz = z.

Solutions of the first equation x2 + 2x(1− x) = x are x = 0, x = 1. One can easily check that if
x = 1, we have z = y = 0, and if x = 0 then z + y = 1. So, we have to solve the

(1− y)2 + 2ay(1− y) = y. (4.2)
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One can find that solutions of (4.2) are y =
3−2a±

√
4+(2a−1)2

2(1−2a) when a ̸= 1
2 . We can verify that

the only solution y =
3−2a−

√
4+(2a−1)2

2(1−2a) is positive. Therefore, we have z =
−1+2a+

√
4+(2a−1)2

2(1−2a) .

Hence,

Fix(Va) =

{
e1,

(
0,

3− 2a−
√
4 + (2a− 1)2

2(1− 2a)
,
−1− 2a+

√
4 + (2a− 1)2

2(1− 2a)

)}
, a ̸= 1

2
.

In order to find 2-periodic points of Va, we have to solve the following equation: V2
a(x) = x.

Let us consider first component of the last equation:

(x2 + 2x(1− x))2 + 2(x2 + 2x(1− x))(1− (x2 + 2x(1− x)) = x

One can find solutions of this equation are

{
0, 1, 3±

√
3i

2

}
. So, a possibility of appearance of the

periodic point is x = 0 or x = 1. Let us find the corresponding value of y when x = 0. To do
that, we have to solve the following one

(y2 + 2(1− a)y(1− y))2 + 2a(1− y)2 + 2ay(1− y)(y2 + 2(1− a)y(1− y)) = y (4.3)

This equation has solutions

{
0, 1,

3−2a±
√

4+(2a−1)2

2(1−2a)

}
. So, the periodic points are

(0, 0, 1), (0, 1, 0). Therefore, we have Per(Va) = {e2, e3}, when a ̸= 1
2 .

(ii) Now, let us consider the case when a = 1
2 . Then (4.2) has a solution y = 1

2 . This means

that z = 1
2 . Therefore, one has

Fix(Va) =

{(
0,

1

2
,
1

2

)}
, a =

1

2
.

It is clear that the equation (4.3) has infinitely many solutions. Therefore, all points in the
line {x = 0} are periodic.

(iii) First of all let us consider the case when a ̸= 1
2 . One can easily check that the line

{x = 0} is invariant w.r.t. Va. We want to study the behavior of the operator over this line.
So, assume that x = 0. Then Va takes the following form:

Va :

 x′ = 0
y′ = z2 + 2ayz
z′ = y2 + 2(1− a)yz

Let us consider the function fa(y) = (1 − y)2 + 2ay(1 − y). One can check easily that
fa(y) is decreasing on [0, 1], when a ̸= 1

2 . We immediately find that fa(fa(y)) > y, when

y >
3−2a−

√
4+(2a−1)2

2(1−2a) , and fa(fa(y)) < y, when y <
3−2a−

√
4+(2a−1)2

2(1−2a) . Therefore, we have

(a) for any n ∈ N one has f
(2n+2)
a (y) ≥ f

(2n)
a (y), when y >

3−2a−
√

4+(2a−1)2

2(1−2a) . So, the se-

quence f
(2n)
a (y) is increasing and bounded, moreover {f (2n)

a (y)} converges to y∗. One can
see that y∗ is a fixed point of fa(fa(y)). The only possibility is y∗ = 1 . Hence, from

f
(2n)
a (y) → 1, one concludes that z(2n) → 0. Thus, we get W (x(0)) = (0, 1, 0) if a ̸= 1

2 and

y >
3−2a−

√
4+(2a−1)2

2(1−2a) .
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(b) Similarly, one has f
(2n+2)
a (y) ≤ f

(2n)
a (y), for any n ∈ N , when y <

3−2a−
√

4+(2a−1)2

2(1−2a) . So,

the sequence f
(2n)
a (y) is decreasing and bounded, moreover {f (2n)

a (y)} converges to y∗. One
can see that y∗ is a fixed point of fa(fa(y)). The only possibility is y∗ = 0. Therefore, one

finds z(2n) → 1. So, we get W (x(0)) = (0, 0, 1), if a ̸= 1
2 and y <

3−2a−
√

4+(2a−1)2

2(1−2a) .

Now assume that a = 1
2 , then Va has the following form.

V 1
2
:

 x′ = 0
y′ = z2 + yz
z′ = y2 + yz

Obviously, one can see that y′ = 1−y . This means that all points in the line x = 0 are periodic
points. So, W (x(0)) = {1− x(0)}.

(iv) Assume that x ̸= 0. Now, let us consider the function f(x) = x2 + 2x(1 − x). One can
show that f (n+1)(x) ≥ f (n)(x), for any n ∈ N . We find that if x ≥ 1

2 , then x′ ≥ 1
2 . That means

the region when x ≥ 1
2 is invariant. Let us study the behavior of Va in the int(S2). In order to

do that we shall divide int(S2) into two subregions. Namely,

S1 =

{
(x, y, z) : x ≥ 1

2

}
, S2 =

{
(x, y, z) : x <

1

2

}
.

From the above observation, one concludes S1 is invariant w.r.t. Va. Now, if x < 1
2 , then

there exists n such that x(n) ≥ 1
2 . Since x(n+1) = (x(n))2 + 2x(n)(1− x(n)) ≥ x(n), x ∈ [0, 1], and

x(n) converge to 1. This means for us it is enough to study the dynamics of Va on S1. Now we
are going to show that W (x(0)) = e1, when x(0) ∈ S1.

Now, we want to show that the Lyapunov function φ(x, y) = x − y is increasing when
0 < a < 1

2 , x ≥ 1
2 . It is sufficient to prove that x′ − y′ ≥ x− y, i.e.

2x− x2 − (1− x− y)2 − 2ay(1− x− y)− x+ y ≥ 0,

when x ≥ 1
2 . So, we need to prove that the minimum value of the expression in the LHS is

greater than or equal zero.

One can calculate that only critical point of this function is

(
2a2+2a

2a2+4a−2
, f

(
2a2+2a

2a2+4a−2

))
. We

easily can check this point doesn’t belong to the simplex, so the minimum value will be in the

boundary of the region Ω =

{
(x, y) : x ≥ 1

2

}
. We can find the minimum value is 0, and it is

clear in figure 1.
So, the Lyapunov function φ(x, y) = x − y is increasing, this means that xn − yn → α.

Since the sequence {x(n)} converges, therefore, one finds that y(n) is also converging. So,
(xn, yn, zn) → (x∗, y∗, z∗) one can see that (x∗, y∗, z∗) is a fixed point, and the only possibility
is (1, 0, 0). So, W (x(0) = e1. By the same way, we can also show that the Lyapunov function
φ(x, z) = x−z is increasing, when 1

2 ≤ a ≤ 1 and x ≥ 1
2 . Consequently, we obtain W (x(0)) = e1.

This completes the proof.
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Figure 1.
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