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Boltzmann equation with a nonlocal collision term

and the resultant dissipative fluid dynamics
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Abstract. Starting with the relativistic Boltzmann equation where the collision term was
generalized to include gradients of the phase-space distribution function, we recently presented
a new derivation of the equations for the relativistic dissipative fluid dynamics. We compared
them with the corresponding equations obtained in the standard Israel-Stewart and related
approaches. Our method generates all the second-order terms that are allowed by symmetry,
some of which have been missed by the traditional approaches, and the coefficients of other
terms are altered. The first-order or Navier-Stokes equation too receives a small correction.
Here we outline this work for the general audience.

1. Introduction

The kinetic or transport theory of gases is a microscopic description in the sense that detailed
knowledge of the motion of the constituents is required. Fluid dynamics (also sloppily called
hydrodynamics) is an effective (macroscopic) theory that describes the slow, long-wavelength
motion of a fluid close to local thermal equilibrium. No knowledge of the motion of the
constituents is required to describe observable phenomena. Quantitatively, if l denotes the mean
free path, τ the mean free time, k the wave number, and ω the frequency, then kl ≪ 1, ωτ ≪ 1
is the hydro regime, kl ≃ 1, ωτ ≃ 1 the kinetic regime, and kl ≫ 1, ωτ ≫ 1 the free-particle
regime.

Hydrodynamic equations are a set of coupled partial differential equations for number density
n, energy density ǫ, pressure P , hydrodynamic four-velocity uµ, and dissipative fluxes such as
bulk viscosity Π, heat current nµ, and shear stress tensor πµν . In addition, the equation of state
(EoS) needs to be supplied. Hydrodynamics is a powerful technique: Given the initial conditions
and the EoS, it predicts the evolution of the matter. Its limitation is that it is applicable at or
near (local) thermal equilibrium only.

Hydrodynamics finds applications in cosmology, astrophysics, high-energy nuclear physics,
etc. In relativistic heavy-ion collisions, it is used to calculate the multiplicity and transverse
momentum spectra of hadrons, anisotropic flows and femtoscopic radii. Energy density or
temperature profiles resulting from the hydrodynamic evolution are needed in the calculations
of jet quenching, J/ψ melting, thermal photon and dilepton productions, etc. Thus hydro plays
a central role in modeling relativistic heavy-ion collisions.

Hydrodynamics is formulated as an order-by-order expansion in gradients of uµ, the ideal
hydrodynamics being of the zeroth order. The zeroth-, first-, and second-order equations are
named after Euler, Navier-Stokes, and Burnett, respectively, in the non-relativistic case (Fig. 1).
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Figure 1. Coarse-graining of kinetic theory.
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Figure 2. Collisions kk′ → pp′ and
pp′ → kk′ occurring at points xµ

and xµ − ξµ within an infinitesimal
fluid element of size dR, containing a
large number of particles represented
by dots.

The relativistic Navier-Stokes equations are parabolic in nature and exhibit acausal behaviour,
which was rectified in the (second-order) Israel-Stewart (IS) theory [1]. The formulation of the
relativistic dissipative second-order hydrodynamics (“2” in Fig. 1) is currently under intense
investigation [2, 3, 4, 5, 6, 7, 8, 9, 10].

Hydrodynamics has traditionally been derived either from entropy considerations (i.e., the
generalized second law of thermodynamics) or by taking the second moment of the Boltzmann
equation; for a review, see [11]. The former approach captures a subset of the terms allowed
by symmetry [12] in the evolution equations for the dissipative quantities. The latter approach
captures some more terms but not all. The question ‘why do the traditional approaches not
generate all the allowed terms’, was the main motivation of our work [13].

2. Present work

In [13] we presented a new derivation of the dissipative hydrodynamic equations within kinetic
theory but using a nonlocal collision term in the Boltzmann equation. We obtained all the
second-order terms that are allowed by symmetry [12] and showed that the coefficients of the
existing terms in the widely used traditional IS equations were altered. These modifications do
have a rather strong influence on the evolution of the viscous medium as we demonstrated in
the case of one-dimensional scaling expansion.

It is important to recall at the outset that an infinitesimal volume element in the fluid is always
supposed to be large compared with the mean interparticle spacing and hence contains “a very
great” number of particles [14]; see also Fig. 2. In kinetic theory, the single-particle phase-space
distribution function f(x, p) is assumed to vary slowly over space-time, i.e., it changes negligibly
over the range of interparticle interaction [15], which in fact is much smaller than the mean
interparticle spacing. It is important to keep this hierarchy of length scales in mind.

It is also interesting to recall Israel and Stewart’s classic paper [1] where they list the
properties of the collision term C[f ]. We quote: “We require only the following general
properties: (i) C[f ] is a purely local function or functional of f , independent of ∂µf . (ii) The
form of C[f ] is consistent with conservation of 4-momentum and number of particles at collisions.
(iii) C[f ] yields a non-negative expression for the entropy production .... These requirements
are of course met by Boltzmann’s ansatz for 2-particles collisions, and, indeed, one may hope
that they hold somewhat more generally, although the locality assumption (i) is a powerful
restriction.” Note the words hope and assumption. The locality assumption is questionable and
we relaxed it on the length scale of dR [13]. Despite the long history of the Boltzmann equation,

International Conference on Heavy Ion Collisions in the LHC Era IOP Publishing
Journal of Physics: Conference Series 422 (2013) 012003 doi:10.1088/1742-6596/422/1/012003

2



a collision term containing ∂µf , to our knowledge, has never been used to derive hydrodynamic
equations. Such a collision term brings about a change not only in hydrodynamics but also in
the kinetic theory.

Our starting point is the relativistic Boltzmann equation with the modified collision term:

pµ∂µf = Cm[f ] = C[f ] + ∂µ(A
µf) + ∂µ∂ν(B

µνf) + · · · , (1)

where Aµ and Bµν depend on the type of the collisions (2 ↔ 2, 2 ↔ 3, . . .).
For instance, for 2 ↔ 2 elastic collisions,

C[f ] =
1

2

∫

dp′dk dk′ Wpp′→kk′ (fkfk′ f̃pf̃p′ − fpfp′ f̃kf̃k′), (2)

where Wpp′→kk′ is the transition rate, fp ≡ f(x, p) and f̃p ≡ 1 − rf(x, p) with r = 1,−1, 0 for

Fermi, Bose, and Boltzmann gas, and dp = gdp/[(2π)3
√

p2 +m2], g andm being the degeneracy
factor and particle rest mass. The first and second terms in Eq. (2) refer to the gain and loss
processes kk′ → pp′ and pp′ → kk′, respectively, occurring anywhere in the infinitesimal fluid
element located at the space-time point xµ. These processes have traditionally been assumed
to occur at the same point xµ with an underlying assumption that f(x, p) is constant not only
over the range of interparticle interaction but also over the entire fluid element of size dR.
Boltzmann equation together with this crucial assumption has been used to derive the standard
second-order dissipative hydrodynamic equations [1, 9, 11]. We, however, emphasize that the
variation of f(x, p) over the span of the fluid element may not be negligible, and hence the
space-time points at which the above two kinds of processes occur should be separated by an
interval |ξµ| ≤ dR within the volume d4R (Fig. 2). The large number of particles within d4R
collide among themselves with various separations ξµ. Of course, the points (xµ − ξµ) must lie
within the past light-cone of the point xµ (i.e., ξ2 > 0 and ξ0 > 0) to ensure that the evolution
of f(x, p) in Eq. (1) does not violate causality. With this realistic viewpoint, the second term
in Eq. (2) involves f(x− ξ, p)f(x − ξ, p′)f̃(x − ξ, k)f̃ (x − ξ, k′), which on Taylor expansion at
xµ up to second order in ξµ, results in the modified Boltzmann equation (1) with

Aµ =
1

2

∫

dp′dk dk′ ξµWpp′→kk′fp′ f̃kf̃k′ , and Bµν = −
1

4

∫

dp′dk dk′ ξµξνWpp′→kk′fp′ f̃kf̃k′. (3)

In general, for all collision types (2 ↔ 2, 2 ↔ 3, . . .), the momentum dependence of the
coefficients Aµ and Bµν can be made explicit by expressing them in terms of the available tensors
pµ and the metric gµν as Aµ = a(x)pµ and Bµν = b1(x)g

µν + b2(x)p
µpν . Equation (1) with this

Aµ and Bµν forms the basis of our derivation of the second-order dissipative hydrodynamics.
Arguments in the previous paragraph were meant only to provide a physical motivation for the
mathematical form of Cm[f ] in Eq. (1).

Conservation of current, ∂µN
µ = 0 and energy-momentum tensor, ∂µT

µν = 0, yield the
fundamental evolution equations for n, ǫ and uµ (defined in the Landau frame)

Dn+ n∂µu
µ + ∂µn

µ = 0,

Dǫ+ (ǫ+ P +Π)∂µu
µ − πµν∇(µuν) = 0,

(ǫ+ P +Π)Duα −∇α(P +Π) +∆α
ν∂µπ

µν = 0. (4)

Equations (4) together with the EoS constitute six equations in fifteen unknowns. How to
derive the extra nine equations that would give us a closed set of equations? Boltzmann
equation provides a way: The requirement of the conservation of energy-momentum and
current implies vanishing zeroth and first moments of the collision term Cm[f ] in Eq. (1),
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i.e.,
∫

dp Cm[f ] = 0 =
∫

dp pµCm[f ] at each order in ξµ. In order to obtain the evolution
equations for the dissipative quantities, we follow the IS approach [1] and consider the second
moment of the modified Boltzmann equation (1)

∫

dp pαpβpγ∂γf =

∫

dp pαpβ[C[f ] + pγ∂γ(af) + ∂2(b1f0) + (p · ∂)2(b2f0)], (5)

and then take recourse to Grad’s 14-moment approximation [16] for the single-particle
distribution in orthogonal basis [9]. This gives the desired equations:

Π = ãΠNS − βΠ̇τΠΠ̇ + τΠnn · u̇− lΠn∂ · n− δΠΠΠθ + λΠnn · ∇α+ λΠππµνσ
µν

+ΛΠu̇u̇ · u̇+ ΛΠωωµνω
νµ + (8 terms), (6)

nµ = ãnµNS − βṅτnṅ
〈µ〉 + λnnnνω

νµ − δnnn
µθ + lnΠ∇

µΠ− lnπ∆
µν∂γπ

γ
ν − τnΠΠu̇

µ

−τnππ
µν u̇ν + λnπnνπ

µν + λnΠΠn
µ + Λnu̇ω

µν u̇ν + Λnω∆
µ
ν∂γω

γν + (9 terms), (7)

πµν = ãπµνNS − βπ̇τππ̇
〈µν〉 + τπnn

〈µu̇ν〉 + lπn∇
〈µnν〉 + λπππ

〈µ
ρ ω

ν〉ρ − λπnn
〈µ∇ν〉α− τπππ

〈µ
ρ σ

ν〉ρ

−δπππ
µνθ + Λπu̇u̇

〈µu̇ν〉 + Λπωω
〈µ
ρ ω

ν〉ρ + χ1ḃ2π
µν + χ2u̇

〈µ∇ν〉b2 + χ3∇
〈µ∇ν〉b2, (8)

where ã = (1 − a) and Ẋ = DX. The “8 terms” (“9 terms”) involve second-order, linear
scalar (vector) combinations of derivatives of b1, b2. All the terms in the above equations are
inequivalent, i.e., none can be expressed as a combination of others via equations of motion [12].
All the coefficients in Eqs. (6)-(8) can be written as functions of hydrodynamic variables [13].

In [13], we demonstrated the numerical significance of the new dissipative equations derived
here, by considering the evolution of a massless Boltzmann gas, with the equation of state
ǫ = 3P , at vanishing net baryon number density, in the Bjorken model [17].

3. Summary

To summarize, we have presented a new derivation of the relativistic dissipative hydrodynamic
equations by introducing a nonlocal generalization of the collision term in the Boltzmann
equation. The first-order (Navier-Stokes) and second-order (Israel-Stewart) equations are
modified: new terms occur and coefficients of others are altered. While it is well known that
the derivation based on the generalized second law of thermodynamics misses some terms in
the second-order equations, we have shown that the standard derivation based on kinetic theory
also misses other terms. The method presented here is able to generate all possible terms to a
given order that are allowed by symmetry.
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