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Abstract. The statistical properties of the fractional part of the random energy of a spectral 
component of black–body radiation have been analysed in the frame of classical Kolmogorovian 
probability theory. Besides the integer part of the energy (which satisfies the well-known Planck–
Bose distribution) the realizations of its fractional part (related to ‘round-off errors’) has been 
represented by binary sequences, like z = 0.001011000010.... It has been shown that the binary 
variables realized by the 0-s and 1-s at different positions are independent. From the condition of 
independence the original distribution of the fractional part z can be recovered. If these binary 
variables have the same distribution, they describe a temperature-independent (random) energy, 
whose expectation value is the well-known zero–point energy. Thus, the zero–point fluctuations 
can be considered as a physical representative of an ideal random number generator. 
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1. Introduction 
In the present paper on ‘digital randomness’ we mean the following: when we express the measurement 
data acquired in a physical experiment, then the digits of the representing real numbers are always 
undergoing some random changes from one measurement act to the other. These uncertainties may come 
from the imperfect control of the boundary conditions, from the always ‘finite resolution’ of the 
measuring apparatus, or from the ‘loss of precision’ in data acquisition, processing, and in displaying 
these data. Accurate numbers, like sharp and reproducible sequences of the 1 (yes) and 0 (no)  digits 
within some finite time interval, can be obtained if we can answer with certainty the questions ‘what is 
unity?’  and ‘what is zero?’. Of course, it is an important matter at what accuracy can we decide (draw the 
level of some physical quantity for distingtion) between these ‘yes’-es and ‘no’-s. The uncertainties can 
also be caused by the ‘objective randomness’ of the constituents and transitions of the physical system 
under study, which cannot be avoided by any means.  In the present paper we shall deal with this kind of 
randomness, which manifest itself in the energy distribution of black–body radiation.  

Thermal noise, due to the universal presence of black–body radiation (Planck, 1959) is the main 
basic source of unavoidable fluctuations and uncertainties in physical measurements. It has already been 
emphasized by Planck (1908) that even the splitting of the total energy of a moving body in two parts; to 
the ‘translation energy’ and to the ‘internal energy’, is conceptionally impossible, because the ‘thermal 
part’ of this latter energy necessarily contains heat radiation, whose energy (and mass) depend on the 
velocity of the body. Taking the simple numerical example due to Planck (1908); if an ideal gas is heated 
at constant volume, then the ratio, at which the acquired energy is distributed among the black-body 
radiation and the mechanical energy of the molecules, is ¼ at 0.001 Hgmm pressure and temperature 
2063 Kelvin (~ the melting point of platinium). It is also well-known that in order to have a computer 
reliably working, the proper cooling of it has to be secured. Otherwise – as is expected merely on physical 
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grounds – sooner or later the system becomes to much loaded with thermal noise, and finally a ‘physical 
loss of precision’ may occur, even if no parts are mechanically or electronically damaged.   

Objective indeterminacy has been widely accepted as an inherent property of quantum systems, 
and the task of the theory is just to quantify this property. In quantum theory the elementary measurement 
acts are represented by projectors on Hilbert spaces, which form the non–distributive lattice associated to 
the physical systems. On the other hand, in real experiments, every piece of information on ‘genuine 
quantum objects’ like single photons (Oxborrow and Sinclair, 2005) or biphotons (Bogdanov et al., 2007) 
is gained through macroscopic interfaces, which are necessarily loaded by additional noise. The ‘signal–
to–noise ratio’ define the reliability of any experiment, and it is calculated from relative frequencies, 
according to classical probability theory (which is based on the ‘common sense’ distributive Boole 
algebra of events). In this context we note that recently, several useful concepts and quantities (like for 
instance the Rényi entropy) introduced in classical probability have received an increasing importance  in 
quantum optics, too (Man’ko and Man’ko, 2011). In the present paper we base all of our considerations 
on the classical Kolmogorovian probability theory (see e.g. Feller (1970) or Rényi (1970)).  

In our earlier studies concerning black–body radiation, on the basis of classical probability theory 
we have already proved that from the classical chaotic energy distribution – by subtracting the ‘dark’, 
fractional part – one can derive the Planck–Bose distribution (Varró, 2007). The boson gas of photons can 
further be uniquely decomposed into the assembly of ‘binary photons’, which follow Fermi–Dirac 
statistics, and they may serve as a natural physical basis for binary representation of integer numbers 
(Varró 2006a-b). In the present work we discuss the fractional part of the energy, which may also be 

considered as a ‘round–off error’ in the relative count number of photons of energy h,  or an error in 
measured correlations of photon count numbers (Varró, 2011). It is assumed that the counter has reached 

the thermal equilibrium during long enough experimental runs. The (random) fractional part  of the 
energy is represented by binary sequences e.g. z = 0.001011000010.... We analyse the connection 

between the distribution of   and the distribution of zeros and ones, which are being realizations of 
binary random variables.  

In order to have the present paper possibly self–contained, in Section 2 we summarize our results 
on the fractional part and the integer part of the energy of a mode of black–body radiation. Section 3 is 
devoted to the proof of the independence of the binary components. In Section 3 we summarize the results 
of the present paper. 
 
2. The fractional part and the integer part of the energy of a chaotic field component  
In the present section we briefly summarize the main steps  of the derivation of the Planck–Bose 
distribution, by subtracting the ‘dark’, fractional part  from the chaotic energy, according to our  earlier 
work (Varró, 2007). In classical physics the black–body radiation, a radiation being in thermal 
equilibrium in a Hohlraum (a cavity with perfectly reflecting walls at absolute temperature T ) is 
considered as a chaotic electromagnetic radiation. The average spatial distribution of such a stationary 
radiation is homogeneous and isotropic and the electric field strength and the magnetic induction of its 
spectral components have completely random amplitudes which are built up of infinitely many 
independent infinitesimal contributions. In this description the electric field strength and the magnetic 
induction of a mode (characterized by its frequency  , wave vector and polarization) of the thermal 
radiation are proportional with the random process 

)2cos()2sin()2cos()( 22   taatatata scsc ,     )arg( sc iaa  ,                         (1) 
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where ca  and sa  are independent random variables. According to the Central Limit Theorem (see e.g. 

Feller, 1970), these amplitudes have Gaussian density functions, 
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where the parameter a  is related to the spectral energy density   Zatau  8/8/)( 22 , with 

32 /8 cZ    being the well–known  spectral mode density in vacuum. The average energy of one 

mode is denoted by  , and  du  gives the energy density of the chaotic radiation in the spectral range 

),(  d . By introducing the mode energy as a classical random variable,  16/)( 22 ZaaE sc  , and 

the ‘action–angle parameters’   16/)( 22 Zpq   and )arg( ipq  , we have from (2) 

).2/]()/exp()/1[()()(
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 dddPdEP
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                                                  (3) 

Thus, the mode energy, E satisfies an exponential (Boltzmann type) distribution, which stems from the 
two-dimensional Gauss distribution (2). Henceforth, we shall not display the uniform phase distribution, 
represented by the factor )2/( d  in (3). In our earlier analysis (Varró, 2007) we have introduced two 

independent energy parameters, 0 ,  , containing two universal constants, and derived their physical 

meaning, too.   has turned out to be kT , where Kergk /10831.1 16  is the Boltzmann  constant 

and  T  is the absolute temperature of the radiation.  h0  is proportional woth the Planck’s quantum 

of action, sec10626.6 27   ergh . In terms of the dimensionless energy variable 0/ E , equation 

(3) can be  brought to the form 

dyyfdyyyP )()(   ,   yeyf 
  )(    (  y0 ),   0/ E ,    /0 .                         (4) 

By introducing the Boltzmann entropy dyffkS  log
0


 , and by using the basic relation 

TES /1/    of phenomenological thermodynamics, we immediately have kTE   0 , the 

law of equipartition of energy. From (4), the distribution function of a mode reads 

yeyFyP 
  1)()(    (  y0 ),     0/ E ,     kT/0  .                                                 (5) 

According to our earlier work (Varró, 2007), the density function and the distribution function of 
the fractional part ][}{    of the mode energy reads 





 







e

e
zGzP

z

1

1
)()( ,     













e

e
zf

z

1
)(    ( 10  z ),   ][}{   ,                             (6) 

where ][  denotes integer part, i.e. the largest integer which is smaller than or equal to  . The 

expectation of the fractional part of the energy is 
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which means that we have derived the Planck factor 1
0 ]1)/[exp( kT  from the continuous distribution 

(6). It is remarkable that for very high temperatures the expectation value of the fractional part tends to a 
temperature-independent constant, as is shown in the second equation of (7). On the basis of (6) and (4), 
we have proved that the integer part ][   must satisfy the Planck–Bose distribution, i.e. 

n

n

n
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1)1(
)( ,     ][  ,     
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1
/0 
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n  ,     nE 00   , 

]log)1log()1[( nnnnkS  .                                                                                                              (8) 

From Wien’s displacement law (Planck, 1959), written in the form )/( TS   , where S  is the 

entropy and   an universal function, it follows from (8) that the energy parameter 0  must be 

proportional with the frequency, i.e.  h0 . The constant of this proportionality is just Planck’s 

universal quantum of action h , and then the universal function is given in (8). According to  h0  and 

the relation   }{][ , from (8), (7) and (4) , for the spectral energy density u  we obtain the 

well-known Planck’s law of black–body radiation (Planck, 1959),  

1
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In the second equation of (9) we have also displayed the average energy U  of a Planckian oscillator, 

containing the zero–point energy ½ h(Planck, 1911), which remains finite even at zero absolute 
temperature. It is interesting to note that, according to (7), the fractional part of the energy of the chaotic 

field, }{ E , approaches exactly this value at high temperatures, 2/ hE  . It can also be shown that 

the integer part ][   can be decomposed into a sum of independent binary random variables 

s
ss 2)(u    ( 10 ors  ), which satisfy Fermi–Dirac statistics (Varró, 2007), i.e. 

s
s ss s 2)(u][ 00   
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s

b
P s 21
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P s 2

2

1
)1)((


 ,   )/exp( kThb      ,...)2,1,0( s .                  (10) 

Equation (8) and (10) shows that there is a natural basis to express the possible photon excitation in terms 

of excitation of the ‘binary photons’, represented by the fermionic variables su . In the next section we 

shall show that a similar decomposition is possible for the fractional part }{  , too.   

 
3. The statistics of the binary digits of the fractional part of the energy  
In the present section we discuss the interrelation between the statistical properties of the fractional part of 
the scaled energy,    ( 10   ), and the zeros and ones in its dyadic expansion. We express   as 

k
k kk k 2/)(v 11   



  ,   k

kk 2/)(v  ,   10)( ork  ,                                                  (11) 

i.e., a possible realization of   may look like ...011010010.0z  (with ,...1,1,0 321   ). 

Following  Chatterji (1963), the algebraic construction of this problem can be formulated as follows. 

First, let ],,[ kkk PE  ( ,...3,2,1k ) be a sequence of measure spaces which defined as  
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}1,0{k ,   }}1{},0{,,{ kk O E ,   kk pP })1({ ,     kkk qpP 1})0({  ( 10  kp ).                 (12) 

In the  algebra kE  the elementary sets }1{  and }0{  represent that in the physical system under 

discussion there exists an excitation of energy kh 2/   (with probability kpP })1({ ) or not (with 

probability })0({Pqk  ), respectively.  Then we construct the Cartesian product ],,[ PE of the measure 

spaces ],,[ kkk PE , i.e. 
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and introduce ],,[ mI B , a measure space in the closed unit interval, where ]1,0[I , the algebra B  is 

built up from the Borel sets, and )(Am  denotes the Lebesgue measure of BA . The expansion 

introduced in equation (11)  corresponds to the mapping k
k k 2/)( 1
   of   onto I , where 

,...),( 21    and the k ’s are 0’s or 1’s. According to this construction, the interrelation between the 

distributions of   and the k ’s is the interrelation of the probability measure P  on the product space 

),( E  and the Lebesgue measure m  on the Borel space ),( BI . Besides various results, Chatterji 

(1963) has shown that the k ’s are independent, with respect to the absolutely continuous induced 

measure m , then the density function of m  have the form 
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where a  is an arbitrary real number. It should be remarked that the measures with exponential densities 

are the only absolutely continuous measures for which the k ’s are independent. In our case, we have to 

put in (14)  kTha /  , and then recover  the density function )1/()( 
    eezf z , which 

has been shown already in equation (4), as a result of our earlier work (Varró, 2007).  

Before we prove the independence of the k ’s, we make some remarks on )(xk ’s considered as 

ordinary functions.   
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In order to prove the independence of the )(xk ’s in the case 0a , by analogy from equation  
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where 1k  or 0k . The products of such probabilities reads 
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thus the product of the probabilities can be brought to the closed form 

1

)1)](2/[exp(
))(( 1

2/

1 


  


a

n
k

ak
k

kk

n

k
a

e

ea
xP

n


 .                                                                             (19) 
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By comparing (20) and (19) we see that the probability (20) of the products of events })({ kk x    equals 

the product (19) of the probabilities of these events, i.e.  

))(())(())(())(,,)(,)(( 22112211 nnnn xPxPxPxxxP   .                       (21)  

Equation (20) shows the  independence of )(xk -s  with respect to the measure whose density is )(xfa , 

which coincides our )(zf  in (4), by choosing kTha /  . On the basis of (10) and (16) our 

results can be summariyed as follows 

  ,   s
s ss s 2)(u 00   



  ,     k

k kk k




   2)(v 11  ,                                 (22) 

or, by introducing a uniform notation r  for r  and r  

r
r r 2 

  ,   0),(  rrr   and 0),(  rrr  .                                                            (23) 

Equations (22) and (23) show that the energy of the chaotic radiation can be decomposed to an integer 
part and to a fractional part. The distribution of the integer part is just the Planck – Bose distribution (8), 
which can be further decomposed to the Fermi – Dirac distributions (10) of binary photons (Varró, 2007). 
The fractional part of   }{][  has been expanded in the dyadic representation (11), whose 

factors, )(xk , have been turned out to be independent random variables. 

In the first case )0( a  shown in equation (14) the distribution function is unity, 1)(0  xfa  and 

the expectation value of the fractional part of the energy would be 2/)(
1

0 0  hxdxxfh a   , which just 

the zero–point energy. However, this energy 0  cannot stem from the original chaotic distribution, 
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because for the fractional part of that we have already derived the temperature dependent result )(zfa   

in equation (14) and (4). For the study of  distribution of the )(xk -s in this case )0( a  one would need 

more sofisticated reasonings and more space, thus, we leave this discussion to a separate paper (Varró, 
2012).  
 
4. Summary 
In Section 2 we summarized our results on the fractional part, }{  , and the integer part, ][  , of 

the scaled energy   of a mode of black–body radiation, which has been represented by a Gaussian 

distribution. In Section 3 is we proved the independence of the binary components of the fractional part. 
By using a mathematical theorem, we have shown that, if the ‘digital randomness’ is such that the binary 
variables at different positions are independent, then we may recover the distribution of the fractional part 
of the energy of the thermal radiation mode.  We have also seen that if, in addition,  ‘the randoness is 

maximal’, then these digits have the same distribution, and 0  has a uniform distribution, and its 

expectation value is just the zero–point energy. According to the present description, this cannot be 
associated to the photon mode, but rather, it can be a property of a resonant absorber , like the Planckian 
oscillators being in equilibrium with the mode. We think that the above considerations and results may 
have even technological relevance in the contex of physical round-off errors in data processing. 
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