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Abstract. The electronic structure of nanocylinder without and with a small perturbation
is investigated with the help of calculation of the local density of states. A continuum gauge
field-theory model is used for this purpose. In this model, Dirac equation is solved on a curved
surface. The local density of states is calculated from its solution. The case of 2 heptagonal
defects is considered. This paper is an extension of our previous work [1] where one heptagonal
and one pentagonal defects in hexagonal graphene network were compared. The metallization
for the perturbed cylinder structure is found.

1. Introduction

The carbon nanostructures play a key role in constructing nanoscale devices like quantum wires,
nonlinear electronic elements, transistors, molecular memory devices or electron field emitters.
Their molecules are variously-shaped geometrical forms its surface is composed of disclinated
hexagonal carbon lattice. The main structure of this kind is graphene - the carbon lattice plane
from which all other kinds are derived. Most often, the heptagons appear in pairs with pentagons
in the connecting parts of the folded forms [2].

Because of the applications, the research of the electronic properties of the carbon
nanostructures is important. One of the main characteristics is the local density of states
(LDoS). In the presented model coming from the effective-mass theory, knowledge of the
solution of the corresponding Dirac equation is necessary for the calculation [3]. This solution is
represented by the wave-function and to find it, we have to know the geometry of the molecular
surface. As discovered in [4] for the case of nanocones, the most suitable geometry for the
description of the close vicinity of the defects is the hyperboloidal geometry. Very often, for a
given geometry, the number of possible defects is limited.

The solutions for spherical, conical and 2-fold-hyperboloidal cases were found in [4, 5, 6]. In
[1], we used the presented model for calculation of the electronic properties of the structures
with the geometry of the 1-fold hyperboloid. The aim was to describe the electronic properties
in the vicinity of the locally negative curvature of an arbitrary nanoparticle. This restriction did
not enable us to do the calculations for the case of more than 1 defect. In this paper, we present
a model describing the electronic properties of a simple nanocylinder and a curved nanocylinder
including 2 heptagons at the opposite sides of the surface. The hyperboloidal geometry is used
again. Because a nanocylinder is an opened nanotube, comparison with the case of the capped
nanotube could be performed (see e.g. [7] for this purpose).
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2. Computational formalism

To research the electronic properties, we have to solve the Dirac equation in (2+1) dimensions.
It has the form

iσαeµα[∂µ + Ωµ − iaµ − iaW
µ ]ψ = Eψ, (1)

where ∂µ means the partial derivation according to the µ parameter, i.e. ∂µ = ∂
∂xµ .

In this equation, besides the energy E, the particular constituents have the following sense:
σα, α = 1, 2, denote the Pauli matrices. The wave function ψ, the so-called bispinor, is composed
of two parts:

ψ =

(
ψA

ψB

)
, (2)

each corresponding to different sublattices of the curved graphene sheet. The gauge field aµ

arises from spin rotation invariance for atoms of different sublattices A and B in the Brillouin
zone and the gauge field aW

µ is connected with the chiral vector (n,m):

aϕ = N/4, aW
ϕ = −1

3
(2m+ n). (3)

If we write the wave function in the form

(
ψA

ψB

)
=

1
4
√
gϕϕ

(
u(z)eiϕj

v(z)eiϕ(j+1)

)
, j = 0,±1, ... (4)

and substituting (4) into (1) we obtain

∂zu√
gzz

− j̃
√
gϕϕ

u = Ev, − ∂zv√
gzz

− j̃
√
gϕϕ

v = Eu, (5)

where
j̃ = j + 1/2 − aϕ − aW

ϕ . (6)

Each of the solutions u, v consists of two linearly independent components such that

u(E, z) = C1(E)u1(E, z) + C2(E)u2(E, z), (7)

v(E, z) =
C1

E

(
∂zu1√
gzz

− j̃u1√
gϕϕ

)
+
C2

E

(
∂zu2√
gzz

− j̃u2√
gϕϕ

)
, (8)

where for a concrete value of E, the functions C1(E), C2(E) stand for satisfying the normalization
condition

2π

zmax∫

−zmax

(|u(E, z)|2 + |v(E, z)|2)dz = 1. (9)

For a given z0, the LDoS is defined as

LDoS(E) = |u(E, z0)|2 + |v(E, z0)|2. (10)
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2.1. Perturbed cylinder

In the case of a small perturbation, we have

−→
R (z, ϕ) =

(
a
√

1 + 4z2 cosϕ, a
√

1 + 4z2 sinϕ, z

)
, (11)

where 4 is a positive real parameter, 4 << 1. For 4 = 0, we get the defect-free cylinder
discussed in previous chapter.

Then

gzz = 1 +
a242z2

1 + 4z2
∼ 1 + a242z2, gϕϕ = a2(1 + 4z2) (12)

and
g = gϕϕ = a2(1 + 4z2). (13)

b For small 4 and neglecting the second order of 4, it can be simplified as

∂zu− j̃

a

(
1 − 1

2
4z2

)
u = Ev, −∂zv −

j̃

a

(
1 − 1

2
4z2

)
v = Eu. (14)

The solution is
u(z) = C41Dν1

(ξ(z)) + C42Dν2
(iξ(z)), (15)

v(z) =
C41

E

(
∂zDν1

(ξ(z)) − j̃Dν1
(ξ(z))

a
(1 − 1

2
42z2)

)
+ (16)

C42

E

(
∂zDν2

(iξ(z)) − j̃Dν2
(iξ(z))

a
(1 − 1

2
42z2)

)
,

where

ν1 = i
a24− 4a2E2 + 4ia

√4j̃ + 4j̃2

8a
√4j̃

, ν2 = −ia
24− 4a2E2 − 4ia

√4j̃ + 4j̃2

8a
√4j̃

, (17)

ξ(z) = (−4)1/4



√
a

2j̃
+

√
2j̃

a
z


 , (18)

Dν(ξ) being the parabolic cylinder function. The functions C41 = C41(E), C42 = C42(E)
will be calculated in the same way as for the defect-free cylinder, i. e. from the normalization
condition

zmax∫

−zmax

(|u(E, z)|2 + |v(E, z)|2)dzdϕ = 4π

zmax∫

0

(|u(E, z)|2 + |v(E, z)|2)dz = 1. (19)

3. Conclusion

In Fig. 1, a comparison of the 2D plots of LDoS is made for different values of 4 and similarly in
Fig. 2, where the 3D plots are compared. The number of defects N = 2 and the other values are
same as in the defect-free case. On the whole, we can conclude from the comparison that LDoS
is slightly increasing for higher 4. Although this is only the first order approximation, we will
see that the real solution of behaves in a similar manner. We found that for the defect-free case,
the electronic properties can sometimes correspond to the case of infinitely long nanoribbons.
For the case of perturbation, the metallic properties are more manifested.
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Figure 1. LDoS as a function of E ∈ (−1, 1) and z = 98 for perturbed cylinder with 4 = 0.05
(left) and 4 = 0.1 (right)

Figure 2. LDoS as a function of E ∈ (−1, 1) and z ∈ (0, 100) for perturbed cylinder with
4 = 0.05 (left) and 4 = 0.1 (right)
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