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Abstract. We study dynamical properties of ultracold fermions with attractive interactions by
means of dynamical mean-field theory and a continuous-time quantum Monte Carlo method. By
calculating the pair potential and the density of states, we discuss the stability of the superfluid
state. We also show that when holes are doped into the fermionic optical lattice system with
intermediate interaction strength, the quasi-particle peak smears and a gap structure instead
appears in the dilute system.

Ultracold atomic systems have attracted wide-spread interest in the physics community since
the demonstration of Bose-Einstein condensation (BEC) in a Rb atom system [1]. Interesting
topics in the field are the nature of the superfluid state in fermionic systems, including the BCS-
BEC crossover [2, 3, 4], and the recently observed pseudogap behavior [5, 6]. These experimental
observations stimulate theoretical investigations on the superfluid state and related phenomena
in ultracold atomic systems.

Two-component Fermi gas systems have been studied theoretically in much detail and it
has been clarified that a pseudogap phenomenon indeed appears in the BCS-BEC crossover
region above the critical temperature [7, 8, 9, 10]. On the other hand, in fermionic optical
lattice systems, such dynamical properties at finite temperatures have not been discussed. In
our previous paper, we have studied the attractive Hubbard model to clarify how the superfluid
state is stabilized and how the gap structure appears at finite temperatures [11]. It is also
instructive to systematically study the doping dependence of dynamical properties. This topic
was beyond the scope of our previous paper, but it may be interesting to investigate how the
introduction of the lattice potential changes low energy properties of the Fermi gas system.

To clarify this, we consider the infinite-dimensional attractive Hubbard model and discuss how
the particle density affects dynamical properties at low temperatures. The model Hamiltonian

is given as Ĥ =
∑

ij,σ (−tij − µδij) c
†
iσcjσ − U

∑

i ni↑ni↓, where ciσ (c†iσ) annihilates (creates) a

fermion on the ith site with spin σ(=↑, ↓), and niσ = c†iσciσ. U is the onsite attractive interaction,
tij is the transfer integral between sites, and µ is the chemical potential. The low-energy
properties have been studied in one dimension [17, 18, 19, 20], two dimensions [21, 22, 23, 24]
and higher dimensions [11, 25, 26, 27, 28, 29]. It is known that the superfluid ground state is
always realized in two and higher dimensions. Here, we focus on the BCS-BEC crossover region
to study how dynamical properties are affected by the particle density and temperature. To this
end, we make use of DMFT [12, 13, 14, 15]. In DMFT, the original lattice model is mapped to
an effective impurity model, where local particle correlations are taken into account precisely.
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The lattice Green’s function is obtained via a self-consistency condition imposed on the impurity
problem. This treatment is formally exact in the limit of infinite spatial dimensions. The self-

consistency condition of our model [30] is given by Ĝ−1

0
(iωn) = iωnσ̂0+µσ̂z−

(

D
4

)2

σ̂zĜ(iωn)σ̂z,

where Ĝ0(iωn) [Ĝ(iωn)] is the non-interacting [interacting] Green’s function for the impurity
model, ωn = (2n + 1)πT is the Matsubara frequency, and T is the temperature. σ̂0 is the
identity matrix and σ̂z is the z-component of the Pauli matrix. We have used the semi-circular

density of states, ρ0(x) =
2

πD

√

1−
(

x
D

)2
, where D is the half bandwidth.

In the DMFT framework, an impurity solver is necessary to obtain the local Green’s
function from the effective impurity model. Here we use the CTQMC technique [16],
which has successfully been applied to a wide variety of models such as the Hubbard
model [11, 31, 32, 33, 34], the periodic Anderson model [35, 36], the Kondo lattice model [37], and
the Holstein-Hubbard model [38, 39]. In this paper, using a CTQMCmethod in the hybridization
expansion formulation [31, 32, 40] extended to the Nambu formalism [11], we directly compute
how the superfluid state is realized in the system.

To discuss the stability of the superfluid state, we first calculate the pair potential ∆ = 〈ci↑ci↓〉
in the system with U = 2D and n = 0.5, 0.25 and 0.125, where n =

∑

σ〈niσ〉/2, as shown in
Fig. 1 (a). At high temperatures, the pair potential is zero and the normal state is realized.
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Figure 1. (a) Pair potential as a function of temperature in the system with U = 2D. (b)
Phase diagram of the attractive Hubbard model. Solid circles, squares, and triangles represent
results for the system at half, quarter, and one-eighth filling. Open circles represent the phase
boundary at zero temperature where the first-order pairing transition occurs [29].

As the temperature is decreased, a phase transition occurs to the superfluid state at a critical
temperature Tc, where the pair potential is induced. We find that the decrease of the particle
density reduces the critical temperature. By examining the critical behavior ∆ ∼ |(T −Tc)/D|β

with the exponent β = 1/2, we determine the critical temperatures Tc ∼ 0.10D (n = 0.5),
0.094D (n = 0.25), and 0.084D (n = 0.125).

By performing similar calculations, we obtain the phase diagram, as shown in Fig. 1 (b). In
the small U case, weakly coupled Cooper pairs are formed and the BCS-type superfluid state
is realized. In the large U case, the strong attraction tightly couples the fermions, and hence a
BEC-type superfluid state is realized. In this case, the superfluid critical temperature is scaled
by the effective hopping for paired bosons ∼ t2/U . The BCS-BEC crossover, which may be
characterized by the maximum of the critical temperature, occurs in the intermediate region
(U ∼ 2D). Fig. 1 (b) shows that the decrease in the particle density results in only a small
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shift of the BCS-BEC crossover region, at least for n ≥ 0.125. Nevertheless, a drastic change
appears in the density of states around the BCS-BEC crossover at T = Tc. The density of
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Figure 2. Density of states of the attractive Hubbard model with U = 2D at T = Tc (a) and
T = 0.05 (b) when n = 0.5, 0.33, 0.25, 0.125 and 0.05.

states is calculated by means of the maximum entropy method [41, 42, 43], using the classic
algorithm and a Gaussian default model. We find in Fig. 2 (a) a quasi-particle peak near the
Fermi level for n ≥ 0.25, while a gap structure appears in the case n ≤ 0.125. This may
originate from the pairing transition, which is realized only in the normal state. It has already
been clarified that when the system is restricted to be paramagnetic, the pair transition as a
function of the attractive interaction takes place between the heavy metallic Fermi liquid state
and the insulating bound pairs state [29]. Note that this transition occurs in systems with
arbitrary fillings, in contrast to the Mott transition in the repulsive Hubbard model. The zero-
temperature phase boundary is shown by the open circles in Fig. 1 (b). It is found that the phase
boundary crosses the U = 2D line around n ∼ 0.125. At the finite temperature we consider here
(T = Tc), the crossover behavior between the metallic and insulating states appears at a slightly
smaller interaction, compared to the transition point at T = 0. Therefore, in the system with
U = 2D, the decrease of the particle density induces a change from heavy metallic behavior
to insulating behavior. Once the system is in the superfluid state (T = 0.05D), the pairing
transition does not affect the low energy properties. Instead, the superfluid gap opens in the
vicinity of the Fermi level, as shown in Fig. 2 (b).

We comment on the difference of low energy properties between the dilute lattice system and
the Fermi gas system. It has already been clarified that in the Fermi gas system, a pseudogap
behavior appears around the BCS-BEC crossover region [7, 8, 9, 10]. In the lattice model, either
a metallic behavior or a gap behavior appears, depending on the interaction strength and the
particle density. Therefore, a competition between these incompatible behaviors should appear
in dynamical properties when the lattice potential is gradually introduced in the Fermi gas
system.

We have investigated the attractive Hubbard model in infinite spatial dimensions. By
combining dynamical mean-field theory with the strong-coupling version of the continuous-time
quantum Monte Carlo method, we have directly dealt with the superfluid phase in the system.
By calculating the pair potential and the density of states of the system at different band fillings,
we have clarified that a gap behavior indeed appears in the density of states when the system
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is far away from half filling.
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