OPEN ACCESS

La substitution effect to the heavy-fermion state in structure-disordered Ce-Ru alloys

To cite this article: Y Amakai et al 2012 J. Phys.: Conf. Ser. 391 012002

View the article online for updates and enhancements.

You may also like

- <u>Rare earth substitution in lattice-tuned</u> <u>Sr_{0.5}Ca_{0.7}Fe₂As₂ solid solutions</u> Tyler B Drye, Shanta R Saha, Johnpierre Paglione et al.
- Optimal Bandgap of Double Perovskite La-Substituted Bi₂FeCrO₆ for Solar Cells: an <u>ab initio GGA+U Study</u> B. Merabet, H. Alamri, M. Djermouni et al.
- Effect of lanthanum substitution on shape and cytotoxicity of zinc oxide (La_xZn_{1x}O) nano-colloids

Khuram Shahzad, Sadaf Mushtaq, Sara Akhtar et al.

DISCOVER how sustainability intersects with electrochemistry & solid state science research

This content was downloaded from IP address 3.137.217.134 on 21/05/2024 at 10:52

La substitution effect to the heavy-fermion state in structuredisordered Ce-Ru alloys

Y. Amakai¹, D. Yoshii¹, S. Murayama¹, H. Takano¹, N. Momono¹,

Y. Obi² and K. Takanashi²

¹Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido, 050-8585, Japan

²Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan

E-mail: a-rain@mmm.muroran-it.ac.jp

Abstract. We have measured the magnetic susceptibility χ , specific heat C_p and resisitivity ρ on sputtered structure-disordered Ce_{80-y}La_yRu₂₀ alloys. The χ for $y \leq 70$ follows the Curie-Weiss law in the measurement temperature region. The paramagnetic effective magnetic moment p_{eff} is about 1.8 μ_B /Ce-atom for y = 0 and decreases with increasing the Laconcentration (0.6 μ_B /Ce-atom for y = 70). The C_p follows linear relation of temperature above 7 K for all the samples. The specific heat coefficient γ shows about 200 mJ/molK² for y = 0 and decreases rapidly with increasing La-concentration. We found the -log *T* dependence of the ρ in the La-substituted samples. Magnitude and temperature range of the -log *T* contribution to the whole resistivity increase with increasing the La concentration. On the other hand, we have observed superconducting behaviors of the resistivity $\rho = 0$ and a large diamagnetization at low temperature (T < 3 K) for y = 80.

1. Introduction

Amorphous alloy system CeRu shows a heavy-fermion like behavior in the Ce-rich side and a superconductivity in the Ru-rich side, which was reported by Homma et al.¹ Recently, we have reported the resistivity², the specific heat³ and susceptibility⁴ for the structure-disordered (*a*-)Ce_xRu_{100-x} alloys in the wide Ce-concentration range x. In the Ce-rich side, the electronic specific heat coefficient γ shows a very large value ($\gamma \sim 220 \text{ mJ/Ce-molK}^{-2}$, at x = 80). The resistivity of *a*-Ce₈₀Ru₂₀ follows a T^2 law with a large coefficient A in the low temperature region. However, the y decreases rapidly with decreasing the Ce-concentration. In the Ru-rich region, the γ becomes less than 10 mJ/molK⁻² and the resistivity becomes zero ($T_c \sim 3.6$ K, at x = 15). These facts suggest that a heavy fermion state and a superconducting state appeared, respectively, in the Ce-rich and Ru-rich sides of the structuredisordered system even with no translation symmetry. The susceptibility for $x \ge 39$ shows a Curie-Weiss paramagnetic behavior. The effective magnetic moment p_{eff} is about 1.8 μ_B /Ce-atom at x = 80and decreases rapidly with decreasing the Ce-concentration ($p_{eff} \sim 0.6 \mu_B$ /Ce-atom, at x = 39). The susceptibility for $x \le 23$ is almost independent of temperature except in the superconducting region. The valence of Ce estimated from recent measurement of x-ray absorption near edge structure is +3.1 in x = 80 and +3.45 in x = 9.5 Therefore, it is considered that the 4*f*-electron of Ce is trivalent configuration in the Ce-rich region of the heavy-fermion state and mixed valence state in the Ru-rich

Figure 1. Temperature dependence of susceptibility χ for *a*-Ce_{80-y}La_yRu₂₀ alloys. The inset is lower temperature susceptibility.

Figure 2. La-concentration dependence of the paramagnetic effective moment p_{eff} and Weiss temperature θ estimated from the Curie-Weiss law.

region of superconducting state. In this study, in order to clarify the effect of 4*f*-electron in *a*-Ce-Ru alloys system, we have measured the susceptibility χ , specific heat C_p and resistivity ρ for the *a*-Ce₈₀₋ $_y$ La_yRu₂₀ alloys (y = 0 - 80) substituted by La.

2. Experimental

Bulk ingots of $Ce_{80-y}La_yRu_{20}$ (y = 0, 20, 40, 60, 70 and 80) were made by arc melting from nominal amount of Ce 99.9 %, La 99.9 % (NIPPON YTTRIUM CO., LTD) and Ru 99.95 % (RARE METALLIC CO., LTD), in argon arc furnace. Amorphous $Ce_{80-y}La_yRu_{20}$ alloys were prepared by a dc sputtering method from the arc-melted ingots onto water-cooled Cu substrate. We confirmed a typical amorphous halo pattern from the x-ray diffraction measurement. The magnetic susceptibility was measured by using a commercial SQUID magnetometer (Quantum Design MPMS) from 2 to 300 K. The specific heat measurement was measured by using a relaxation method (Quantum Design PPMS) from 1.9 to 40 K. The electrical resistivity was measured by using a typical four-terminal method (Quantum Design PPMS) from 1.9 to 300 K.

3. Results and Discussion

Figure 1 shows temperature dependence of the susceptibility χ for *a*-Ce_{80-y}La_yRu₂₀ alloys. The χ for $y \le 60$ increases with decreasing temperature, which follows the Curie-Weiss (CW) law in the measurement temperature region. The value of χ decreases with increasing La-concentration. Figure 2 shows the La-concentration dependence of the paramagnetic effective magnetic moment p_{eff} and Weiss temperature θ estimated from the CW law $N_{Ce}(p_{eff})^2/3k_B(T-\theta)$, where N_{Ce} is the number of Ceatom per gram. The value of p_{eff} is about 1.8 μ_B /Ce-atom for y = 0, and decreases with increasing the La-concentration. However, the p_{eff} for $20 \le y \le 60$ exhibits almost constant value ($p_{eff} \approx 1.5 \mu_B$ /Ce-atom). With increasing La-concentration further, the p_{eff} decreases again and becomes about 0.6 μ_B /Ce-atom for y = 70. The value of θ shows about -18 K for y = 0 and the absolute value decreases with increasing the La-concentration. The θ for y > 20 is almost constant value ($\theta \approx 5$ K). Figure 3 shows low temperature specific heat C_p over T vs. T^2 plots for *a*-Ce_{80-y}La_yRu₂₀ alloys. As shown in this figure, the C_p/T follows almost a T^2 -linear relation above 7 K for all the samples. However, the C_p/T for all the samples increases at low temperature with decreasing temperature. We have estimated the γ -value extrapolated from a linear part above 7 K of C_p/T versus T^2 to T = 0. The inset of fig. 3 shows the La-concentration dependence of the specific coefficient γ and value of C_p/T at 2 K for

Figure 3. Low temperature specific heat C_p over $T vs. T^2$ plots for a-Ce_{80-y}La_yRu₂₀ alloys. The inset is La-concentration dependence of the specific heat coefficient γ and value of C_p/T at 2 K.

a-Ce_{80-v}La_vRu₂₀ alloys. The γ -value shows about 200 $mJ/molK^2$ for y = 0 and decreases rapidly with increasing La-concentration. The γ for y = 20 and 40 is almost constant value (~ 50 mJ/molK^2). With increasing the La-concentration further, the γ decreases again and reach about 10 mJ/molK² at y >60. The $C_{\rm p}/T$ at 2 K exhibits the La-concentration dependence similar to they. However, the value of C_p/T at 2 K for $y \le 40$ is a much larger than γ -value. On the other hand, the C_p/T at 2 K and γ for $y \ge 60$ are almost the same value. Figure 4 shows temperature dependence of the resistivity ρ/ρ_{280K} normalized at 280 K for $y \le 70$. The ρ for each sample exhibits small temperature change in the whole temperature region and decreases with decreasing the T above 150 K. The ρ for y = 0decreases with decreasing the temperature and a plateau in 10 K $\leq T \leq$ 20 K probably due to the

Figure 4. Temperature dependence of the resistivity for a-Ce_{80-y}La_yRu₂₀ alloys. The solid lines show a logarithmic guideline for the eyes.

Figure 5. Temperature dependence of the low temperature resistivity ρ and susceptibility χ for y = 80.

Kondo effect. We found the $-\log T$ dependence of ρ in the higher temperature region by the La substitution for $y \ge 20$. The $-\log T$ contribution to the whole resistivity increases with increasing the La-concentration. This behavior suggests that the Kondo-scattering effect is enhanced by the La substitution. The ρ at T < 7 K for y = 0 obeys the T^2 dependence with a large coefficient A. Since we have found the large γ value of the specific heat in y = 0, the T^2 dependence of the ρ in the low temperature region suggests formation of the heavy-fermion state. However, the T^2 dependence of the heavy-fermion state disappeared by the La substitution.

Figure 5 shows the low temperature resistivity ρ and susceptibility χ for y = 80. The ρ at T > 3K is almost independent of temperature. We have observed a rapid decrease of ρ in T < 3 K and found zero resistivity in $T \sim 2.6$ K. The χ for y = 80 shows a small value almost independent of temperature like

the Pauli paramagnetic behavior except in the low temperature region. As shown in the inset of Fig. 5, a large diamagnetization was observed at T < 3 K. The zero resistivity with a rapid decrease of the ρ and a large diamagnetization of the χ suggest that the superconducting transition have occurred at T = 2.6 K.

In the *a*-Ce_xRu_{100-x} alloys case, according as the γ and p_{eff} rapidly decrease with decreasing the Ceconcentration, the superconductivity appeared in the Ru-rich region. The p_{eff} of the present *a*-Ce_{80-y}La_yRu₂₀ alloys does not show rapid decrease. Although the p_{eff} decreases down to 0.6 μ_{B} /Ce-atom in y = 70, the superconductivity does not occur up to y = 80. The γ for the present alloys decreases with decreasing the Ce-concentration, but does not become small very much in comparison to the case of the *a*-Ce-Ru alloy in the same Ce-concentration. The $\gamma = 61$ and 19 mJ/molK² for y = 40 and 60, respectively, whereas, $\gamma = 9.6$ and 3.9 mJ/molK² for the same Ce-concentration in *a*-Ce-Ru alloys with the superconductivity at $T_c = 1.1$ and 3.0 K, respectively.³ The -log T dependence of ρ is observed in the higher temperature region and becomes larger depending on the La substitution. Therefore, the La substitution to the *a*-Ce-Ru alloy would make an increase of the Kondo temperature and make the local Kondo scattering effect clearer in the Ce diluted alloys.

Acknowledgements

This work was performed under the inter-university cooperative research program of the Institute for Materials Research, Tohoku University, and supported by a grant for Kidorui (Rare Earth) Program (2011) through Muroran Institute of Technology.

References

- [1] Homma Y, Sumiyama K, Yamaguchi H and Suzuki K 1997 J. Phys. Soc. Jpn. 66 1457
- [2] Obi Y, Murayama S, Amakai Y, Okada Y and Asano K 2006 *Physica B* **378-380** 857
- [3] Amakai Y, Murayama S, Takano H, Mizutani M, Asano K, Obi Y and Takanashi K 2007 J. Magn. & Magn. Mater. **310** 416
- [4] Amakai Y, Murayama S, Obi Y, Takano H, Momono N and Takanashi K 2009 J. Phys.:Conf. Ser. 150 042004
- [5] Li Y, Onishi N, Nakai I, Amakai Y and Murayama S 2009 J. Phys. Soc. Jpn. 78 094717