First experiments using a table-top electrostatic ion storage ring, the Mini-Ring

This content has been downloaded from IOPscience. Please scroll down to see the full text.
(http://iopscience.iop.org/1742-6596/388/10/102011)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 54.191.40.80
This content was downloaded on 01/09/2017 at 12:15

Please note that terms and conditions apply.

You may also be interested in:

Commissioning and first tests of a table-top electrostatic ion storage ring, the Mini-Ring
Jérôme Bernard, Guillaume Montagne, Serge Martin et al.

Development of a table-top electrostatic ion storage ring (\mu E-ring)
Jun Matsumoto, Kodai Gouda, Natsumi Kondo et al.

Storage test of a table-top electrostatic ion storage ring (E-ring)
Jun Matsumoto, Ryujiro Saiba and Haruo Shiromaru

Laser spectroscopy of the methylene blue cation in an electrostatic ion storage ring
T Sato, T Majima, Y Zama et al.

Is there physics in a millisecond?
Antonio Serrano

An introduction to the trapping of clusters
R Brédy, J Bernard, L Chen et al.

Gas-phase spectroscopy of biomolecular ions: Porphyrs and metalloporphyrins
Steen Brøndsted Nielsen

Charge transfer and ionization in collisions between multiplycharged noble gas ions
A Diehl, H Bräuning, R Trassl et al.

Time evolution of internal energy distribution of Anthracene studied in an electrostatic storage
ring, the Mini-Ring
L Chen, M Ji, J Bernard et al.
First experiments using a table-top electrostatic ion storage ring, the Mini-Ring

Serge Martin1, Jérôme Bernard, Guillaume Montagne, Richard Brédy, B. Concina and Li Chen

Université de Lyon, F-69622, Lyon, France; Université Lyon 1, Villeurbanne; CNRS, UMR5579, LASIM

Synopsis We report experiments using a small electrostatic ion storage ring. We demonstrate its capability to measure the lifetime of metastable anions and cations up to hundred of milliseconds produced in the ECR source. First experiments using LASER heating are also presented.

We have built a table top electrostatic ion storage ring, called Mini-Ring [1]. Many configurations have been tested and shown that the storage conditions are not critical. The Mini-Ring is composed of two conical electrostatic mirrors [2] and four pairs of deflector plates (see fig. 1.). Three Faraday cups are positioned around the ring for beam diagnostics.

A channeltron faces one of the straight sections in order to detect neutrals coming out of the ring. All elements are positioned on a single plate to achieve a precise alignment of the electrodes.

The storage beam has a diameter of 3 mm and up to 10^6 ions can be stored during a time estimated to 0.1 s. The actual main limitation in the storage time is due to collisions with the back-ground gas (the pressure was 2×10^{-9} mbars at the best conditions). We have stored ions with large kinetic energy range from 2 q keV to 10 q keV.

The ECR Nanogan ion source has been used to produce the cations and anions . Up to now beams of He+, F+, Ar+ , SFn+ (n=1-5), as well as Polycyclic Aromatic Hydrocarbon and fullerene have been stored. Intense beams of monocharged ions have been obtained using a 10 Ghz very low power HF (less 0.5 W). In this low power conditions dimer and trimer have also been produced. The anions like fluorine and SF6 have been surprisingly produced with this source normally built to produce multicharged ions. The lifetime of SF6 could be measured and compared with other experimental values. Results concerning energy loss measurements in the reactions $A^+ + T \rightarrow A^- + T^2+$, where A is an atomic or molecular projectile (F+, SFn+ ,….) and T a target vapor or gas (Na, Cs, Ar….), will be presented. The method is based on the measurement of the rotation frequency of the negative ion A^-. Recent Laser experiments will be also presented.

Fig. 1. Three dimensional schematic of the mechanical design of the Mini-Ring.

References

1 E-mail: smartin@univ-lyon1.fr