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Abstract. We review our recent work [1] on gravitational waves in viable f(R) models. We
concentrate on the exponential gravity and Starobinsky models. We show that in both cases,
the mass of the scalar mode is order of 10−33eV when it propagates in vacuum. In the presence
of matter density, such as galaxy, the scalar mode can be heavy. In particular, it becomes almost
infinity so that the scalar mode of gravitational wave for the exponential model disappears like
the ΛCDM, whereas it can be as low as 10−24eV in the Starobinsky model, corresponding to
the lowest frequency of 10−9 Hz, which may be detected by the current and future gravitational
wave probes in space.

1. Introduction

It has been widely accepted that one simple way to modify general relativity is to promote
the Ricci scalar R in the Einstein-Hilbert action into an f(R) function, which is the so-called
f(R) theory [2, 3, 4]. A viable model of f(R) can generate a late-time accelerating expansion
of our universe, have the radiation-dominated stage followed by the matter-dominated one, and
be consistent with the solar-system constraint under chameleon mechanism. The conditions for
such a viable f(R) model include (i) the positivity of the effective gravitational coupling; (ii) the
stability of cosmological perturbations; (iii) the stability of the late-time de-Sitter point; (iv) the
asymptotic behavior to ΛCDM at the high curvature regime; (v) the solar system constraint; and
(vi) the constraint from the violation of the equivalence principle. The typical examples of the
viable f(R) models are Hu-Sawicki [5], Starobinsky [6], Tsujikawa [7] and exponential gravity
models [8] as shown in Table 1.

In Ref. [9], Chiba showed that an f(R) model will allow a new scalar degree of freedom.
This corresponds to a new scalar mode of gravitational wave besides the ordinary tensor one
of general relativity. This new scalar mode will be massive and propagate as a longitudinal
polarization. Various discussions and predictions about this extra scalar mode of gravitational
wave have been given in the literature [10, 11, 12, 13]. However, most of them were concentrated
on either quadratic or inverse-curvature type of f(R) models, which is highly restricted by the
observational results [3]. In the talk, we will review our recent work [1] on gravitational waves
in viable f(R) models. To illustrate our results, we will concentrate on the exponential and
Starobinsky models. Our study can be easily extended to other viable models.
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Table 1. Viable f(R) models

model f(R) Constant parameters

(a) Hu-Sawicki R− c1RHS(R/RHS)
p

c2(R/RHS)
p+1 c1, c2, p(> 0),RHS(> 0)

(b) Starobinsky R+ λRc

[

(

1 + R2

R2
c

)

−n
− 1

]

λ(> 0), n(> 0), Rc

(c) Tsujikawa R− µRT tanh
(

R
RT

)

µ(> 0), RT(> 0)

(d) Exponential R− βRE

(

1− e−R/RE

)

β, RE

We use units of kB = c = ℏ = 1 and the gravitational constant G = M−2
P l with the Planck

mass of MP l = 1.22089 × 1019GeV .

2. Gravitational Waves in Viable f(R) Gravity

We start by considering a general Einstein-Hilbert action

S =
1

2κ2

ˆ

d4x
√−gf(R) + Sm(gµν ,Ψµν), (1)

where f(R) is an arbitrary function of the Ricci scalar R, Sm is the action of the matter part
and κ2 ≡ 8πG. In the metric formalism, we vary the action (1) with respect to gµν , and the
modified Einstein field equation can be obtained as

f ′(R)Rµν −
1

2
f(R)gµν + (gµν�−∇µ∇ν) f

′(R) = κ2Tµν , (2)

where a prime denotes the derivative with respect to R, ∇µ is the covariant derivative and
� = gµν∇µ∇ν is the d’Alembert operator. The trace of the field equation (2) gives

f ′(R)R − 2f(R) + 3�f ′(R) = κ2T, (3)

where T = gµνTµν = −ρ + 3a2P is the trace of the matter energy-momentum tensor, and a is
the scale factor.

For f(R), the de Sitter stage is a vacuum solution with a positive constant background
curvature Rd, which is assumed to be homogeneous and static. Consequently, one has

∇µf
′(Rd) = 0 and f ′(Rd)Rd = 2f(Rd). (4)

Moreover, from Eq. (2), the Ricci tensor satisfies Rµν |Rd
= gµνRd/4.

In order to investigate gravitational wave in f(R) theories, we need to study the linearized
theory of f(R) gravity. Consider a small perturbation from the FRW metric:

gµν = gµν + hµν , (5)

where |hµν | ≪ 1 is the perturbation and gµν = diag(−1, a2, a2, a2) is the FRW background
metric. If the evolution of the system is much shorter than Hubble time, we can approximate
the background spacetime to be nearly the Minkowski one with gµν ≈ ηµν = diag(−1, 1, 1, 1).

We keep the theory to be the first order in hµν and neglect terms higher than O
(

h2
)

.
The different between gravitational waves in f(R) and general relativity is that it contains

an extra scalar degree of freedom in f(R). This comes from the non-vanishing trace of the
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field equation. Eq. (3) can be viewed as equation of motion for a scalar field Φ. By the
identifications [14, 15]

Φ → f ′(R) and
dVeff

dΦ
→ 2f(R)− f ′(R)R− κ2ρ

3
, (6)

we obtain the Klein-Gordon equation for the scalar field Φ:

�Φ =
dVeff

dΦ
. (7)

In order to have a stable perturbation of spacetime, we must require the background scalar
Φ0 to stay at the stable minimum of the effective potential Veff , i.e., dVeff/dΦ = 0 and
d2Veff/dΦ

2 > 0, corresponding to the conditions for the de-Sitter point curvature (4) and the
positivity of the scalar mass, respectively, in vacuum. Perturbing the trace of the field equation
(3) with a nonzero constant background curvature R0 yields

3�δf ′ +R0δf
′ + f ′(R0)δR − 2δf = 0. (8)

Using the relations δf = f ′(R0)δR and δf ′ = f ′′(R0)δR, we obtain the massive wave equation
for the scalar mode [11]

�hf = m2
shf , (9)

where hf ≡ δf ′/f ′(R0) is the field of the scalar mode and

m2
s =

1

3

(

f ′(R0)

f ′′(R0)
−R0

)

(10)

is the mass squared of it. Note that m2
s = V ′′

eff (Φ) [5]. For any viable f(R) model, the condition

m2
s > 0 is needed for the stability of the cosmological perturbation and to prevent the field from

being a tachyon [14].
For the FRW metric, Eq. (9) should be expressed as

(

−∂2
0 +

∂2
i

a2
− 3H∂0

)

hf = m2
shf , (11)

where the term −3H∂0 gives a damping factor caused by the expansion of the universe. To
illustrate the solution of Eq. (11), we take the de Sitter universe with a constant H. In this case,
the solution is a damped plane wave

hf = A(~k)e−
3

2
Htexp (iqµxµ) , (12)

where qµ ≡ (ωm, ~k), ωm =
√

~k2/a2 +m2
s − 9

4H
2 is the angular frequency and A(~k) is the

amplitude. For simplicity and without loss of generality, we take a = 1 and neglect the damping
effect as ~k2/a2 ≫ H2. As a result, Eq. (9) leads to a simple plane wave solution

hf = A(~p)exp (iqµxµ) , (13)

with ωm =

√

~k2 +m2
s. We can see that ms is the cutoff frequency of the scalar mode of

gravitational wave. For ωm < ms, the wave vector becomes imaginary. The waveform is an
exponential decay in distance, i.e., hf ∝ exp(−~k ·~x). Thus, the scalar will not propagate in space
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below the cutoff frequency. The massive scalar mode will not propagate at the speed of light
with the group-velocity

vg =

∣

∣

∣

~k
∣

∣

∣

ωm
=

√

ω2
m −m2

s

ωm
. (14)

Note that the tensor mode in f(R) is exactly the same as that in GR when a traceless gravitational
wave propagates in a non-zero de-Sitter curvature Rd background.

Since the ΛCDM model can be viewed as a special case of f(R) with

f(R) = R− 2Λ, (15)

where Λ is the cosmological constant, the mass of the scalar mode is infinite, i.e., m2
s = ∞, which

requires infinite large energy to excite the scalar mode. Clearly, there is no scalar mode in the
ΛCDM model. Although the de Sitter curvature Rd is not zero, i.e.,

Rd = 4Λ (ΛCDM) , (16)

the contribution from Rd is negligible because Λ ≈ H2
0 ≈

(

10−33eV
)2

, where H0 is the present
Hubble parameter.

In the exponential gravity model, the viable conditions are satisfied when β > 1 and
RS > 0 [8, 16]. The feature is that it is free from the fine tuning problem and it has only one
parameter more than the ΛCDM model. According to the condition for the de-Sitter curvature
in Eq. (4), Rd satisfies

(

1− βe−Rd/RS

)

Rd = 2Rd − 2βRS

(

1− e−Rd/RS

)

. (17)

Defining x ≡ Rd/RS , Eq. (17) becomes

x = 2β − βe−x (x+ 2) . (18)

The factor e−x (x+ 2) decreases very fast when β > 1, which is generally required by the viable
condition for the exponential gravity. Therefore, we can obtain the asymptotic solution of x for
a large β:

x = 2β for β ≫ 1. (19)

From Eq. (10), we derive the mass squared of the scalar mode in the exponential gravity as

m2
s =

1

3
RS

(

eRd/RS − β

β
− Rd

RS

)

=
1

3
RS

(

1

β
ex − 1− x

)

. (20)

Since in the large curvature regime R/RS ≫ 1, the theory will recover the cosmological constant
model, RS is roughly inverse proportional to β in the way that

βRS
∼= 2Λ = 9.94 × 10−66eV 2 (21)

with the value of Λ obtained from WMAP 7 [17], SDSS 7 [18] and SCP Union2 observations [19].
Eq. (20) then can be approximated as

m2
s
∼= 2Λ

3β

(

1

β
ex − x− 1

)

. (22)

In Table 2, we show the exact ms without any approximation for β = 1.27, 2, 3 and 4, respectively,
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Table 2. Numerical results of the scalar mode mass ms in vacuum with respect to different β
in the exponential gravity model.

β h yiniH Ω0
m RS (10−66eV 2) ms (10

−33eV )

4 0.7050 2.618 0.2761 2.452 24.36
3 0.7059 2.609 0.2758 3.263 11.39
2 0.7103 2.558 0.2738 4.824 5.069
1.27 0.7194 2.45 0.2701 7.39 1.86

where we have used the values of RS obtained from in Ref. [20] under the constraints of WMAP
7, SDSS 7 and SCP Union 2 measurements.

When β is O (1), ms is around 10−33eV . However, the cosmological observations do not
give any significant upper bound on β. Thus, ms could be arbitrary large in this case. As
β → ∞,corresponding to the ΛCDM model with ms → ∞, the scalar mode of gravitational wave
vanishes.

In the Starobinsky Model, Rc is roughly the present cosmological density and λ and n are
positive model parameters. From the solar system constraint and the bound on the violation of
the equivalence principle, one gets n > 0.9 [21]. Since for R ≫ Rc, the model will restore the
ΛCDM model, we have λRc ≃ 2Λ, Rd/Rc ≃ 2λ and Rd ≃ 4Λ = 1.99 × 10−65eV 2 when λ ≫ 1.

We now consider gravitational waves in inner galaxy. In the presence of matter density, the
scalar mode might not be able to exist in the viable f(R) models. Consider a scalar mode
of gravitational wave propagating within our Galaxy halo. The local homogeneous density of
dark matter and baryonic matter is roughly ρ ≈ 10−24g/cm3. If we take this matter density
into our analysis, it will give a large contribution to the background curvature compared to the
vacuum de Sitter curvature. (The ratio of the matter density ρ to de Sitter curvature Rd is about
κ2ρ/Rd ≃ κ2ρ/4Λ ≈ 105.) In this case, the condition for the background curvature R0 in Eq. (4)
should be modified as

f ′(R0)R0 = 2f(R0)− κ2ρ, (23)

where R0 is the background curvature with matter. Note that for viable f(R) models, the
solutions to Eq. (23) can be approximated as R0 ≃ κ2ρ at the high curvature regime.

In the case of the exponential gravity, Eq. (23) gives

x = 2β + r − βe−x (x+ 2) , (24)

where x ≡ R0/RS and r ≡ κ2ρ/RS are the ratios of the background curvature and matter density
to RS , respectively. Since βRS

∼= 2Λ from (21), we find that the solution of Eq. (24) is extremely
large,

x ≃ r ≃ κ2ρ

Rd/2β
≃ 2× 105β, (25)

which just leads to R0 ≃ κ2ρ. Thus, in the exponential gravity, the mass of the scalar mode will
become an extreme in the galaxy region:

ms ≈
√

2Λ

3β2
e2×105β ≈ ∞. (26)

The corresponding cutoff frequency ωm is also infinite. As a result, it is almost impossible to
detect this scalar mode within our Galaxy under the exponential gravity scenario. Moreover, for
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any source that is massive enough to generate gravitational waves, we expect them to lay in the
region with density higher than the baryonic/dark matter density 10−24g/cm3. Therefore, the
scalar mode will not have the chance to propagate from the source in the exponential gravity.

In the case of the Starobinsky model, the situation is quite different. The scalar mode of
gravitational wave can have a light mass in the galaxy region. The minimum bound of the scalar
mode mass is ms & 10−24eV when ρ = 10−24g/cm3. The corresponding cutoff frequency is
quite small fm & 10−9 Hz. This feature will allow the propagation of the scalar mode inside the
galaxy. Hence, detecting the scalar mode in the Starobinsky model will be possible. In Fig. 1,

Λ=1

Λ=2

Λ=3

Λ=4

1.0 1.5 2.0 2.5 3.0 3.5 4.0
10-45

10-39

10-33

10-27

10-21

10-15

10-9

n

m
s2
He

V
2
L

Figure 1. m2
s versus n in the Starobinsky

model with matter density ρ = 10−24g/cm3

and λRc
∼= 2Λ.

we depict the mass squared versus the model parameter n with different fixed values of λ, where
we have used λRc

∼= 2Λ. The scalar mode can still be very heavy when the index n goes to a
large value, but the mass dependence on the parameter λ is not quite significant.

3. Conclusions

We have discussed gravitational waves in viable f(R) theories. Using the weak field
approximation on the field equation, we have confirmed that f(R) will give an extra massive
scalar mode besides the ordinary tensor mode in the standard GR. We have explicitly investigated
the situations of the extra scalar mode of gravitational wave in the exponential gravity and
Starobinsky models of the viable f(R) gravity theories. In vacuum, we have shown that the
typical mass squared of the scalar mode is in the order of the de-Sitter curvature m2

s ∼ Rd ≈
10−66eV 2 in both models. In the galaxy region, the galactic matter density of ρ = 10−24g/cm3

is about 105 larger than the de-Sitter curvature Rd in both models. In the exponential gravity,
the mass of the scalar mode in galaxy is undetectable large. However, in the Starobinsky model,
the mass can be much smaller with its lower bound in galaxy being about 10−24eV (or 10−9

Hz). Therefore, it is possible to observe the scalar mode of gravitational wave in the Starobinsky
scenario if there is an astrophysical source which generates this scalar mode.

Recently, there is an underway space-based gravitational wave probing experiment, the Laser
Interferometer Space Antenna (LISA) [22], which is a proposed joint mission of the European
Space Agency (ESA) and NASA. It will measure the low-frequency band (10−5 to 1 Hz) of
gravitational waves with high signal-to-noise ratio. Since LISA will be located far from the
Earth and other gravitational sources, the background curvature of it is very low compared to
the ground-based experiments, which allows the propagation of the scalar mode in some viable
f(R). As a result, LISA has a great chance to direct detect not only the ordinary gravitational
wave but also the clues of the deviation from Einstein’s GR by analyzing the scalar mode behavior
of gravitational wave. We note that other gravitational wave probes, such as ASTROD-GW [23]
with the sensitivity in the 10−7 − 10−1 Hz band, may also detect the extra scalar mode. Finally,
we remark that the scalar mode in a viable f(R) cannot be observed by the ground gravitational
searches due to the large background curvature.
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