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Abstract. We consider Friedmann-Lemâıtre-Robertson-Walker flat cosmological models in
the framework of general Jordan frame scalar-tensor theories of gravity in two different cases:
in the dust matter dominated era and in the potential dominated era. Motivated by the local
weak field constraints and by cosmological observations, we develop and use an approximation
scheme for the regime close to the so-called limit of general relativity. The ensuing nonlinear
approximate equations for the scalar field and the Hubble parameter can be solved analytically
in cosmological time in both cases. We find criteria for the functions ω and V characterizing
a scalar-tensor theory, to determine whether the theory does or does not possess solutions
converging to general relativity asymptotically in time. The converging solutions can be
subsumed under two principal classes: exponential or polynomial convergence, and damped
oscillations around general relativity. The classes of scalar-tensor theories of gravity which
contain these types of solutions and satisfy observational constraints, are candidates to explain
possible deviations from the standard ΛCDM model. Finally, the effective equation of state
parameter weff is used to illustrate possible asymptotic cosmological dynamics.

1. Introduction

Various cosmological observations of our Universe can be fairly well accommodated within the
ΛCDM concordance model [1, 2] based on the theory of general relativity (GR). However, there
is a number of viable alternative theories of gravity which also manage to conform sufficiently
well with observational data [3, 4, 5, 6]. One such family of theories is provided by scalar-
tensor gravity (STG) which employ a scalar field Ψ besides the usual spacetime metric tensor
gµν to describe the gravitational interaction. In the so-called Jordan frame and Brans-Dicke
like parametrization STG form a collection of theories which contain two functional degrees of
freedom, a coupling function ω(Ψ) and a scalar potential V (Ψ). As has been discussed by many
authors previously [7, 8, 9, 10, 11, 12, 13, 14, 15, 16], for a range of choices of ω and V the
cosmological evolution of dust and potential dominated STG models naturally converges close
to the one expected from GR. On the other hand, cosmological observations and data from the
local weak field tests permit to suppose that only these STG models are viable which involve this
property. Namely, limits of observed values of parametrized post-Newtonian (PPN) parameters
|β−1| < 10−4, |γ−1| < 10−5 and the time variation of the gravitational constant |Ġ/G| < 10−13

yr−1 strongly constrain the parameters of the theory at present [17, 18]. Constraints from the
cosmological dynamics and from the Big-Bang nucleosynthesis (BBN) indicate that the Universe
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was very close to GR already at the beginning of matter dominated era [19]. Yet, at the same
time STG models may also offer a possibility to explain small observational differences from
pure GR ΛCDM behaviour, e.g. recent data are not excluding the possibility that the effective
equation of state (EoS) of dark energy is changing in the cosmological time [20, 21].

In this paper we consider the flat Friedmann-Lemâıtre-Robertson-Walker (FLRW)
cosmological models in the framework of general STG, close to GR (referred to as ‘the limit
of GR’ or ‘GR point’). We apply the approximation scheme for the field equations to capture
the dynamics near the GR limit. We follow our recent papers [22, 23, 24, 25] where we
presented and justified an approximation scheme, as well as derived the non-linear equations for
deviations of the scalar field and for the Hubble parameter. The resulting equations explicitly
contain cosmological time and can be solved analytically in the potential dominated and in
the matter dominated epoch. As an example, we use the effective barotropic index weff

to illustrate the cosmological dynamics near GR point. For some related recent studies see
Refs. [26, 27, 28, 29, 30, 31, 32, 33, 34, 35].

In section 2 we recall STG FLRW equations and outline the approximation method worked
out in Ref. [22]. In section 3 we review the solutions of resulting nonlinear equations in the
regime when the density of scalar potential V (Ψ) dominates over the energy density of matter
ρ at cosmological scales (i.e. V 6= 0, ρ = 0) as expected for the dark energy era [22, 23, 24].
Section 4 is devoted to the dust matter dominated era, introducing the results from a recent
publication [25]. Some characteristic examples and implications for selecting a model of STG
viable for realistic cosmological scenario is also briefly discussed in sections 3 and 4. Finally,
section 5 provides a brief summary.

2. Equations and Approximation Method

We consider a general scalar-tensor theory in the Jordan frame given by the action

S =
1

2κ2

∫

d4x
√−g

[

ΨR(g) − ω(Ψ)

Ψ
∇ρΨ∇ρΨ − 2κ2V (Ψ)

]

+ Sm(gµν , χm) . (1)

Here ω(Ψ) is a coupling function (we assume 2ω(Ψ) + 3 ≥ 0 to avoid ghosts in the Einstein
frame), V (Ψ) ≥ 0 is a scalar potential, κ2 is the non-variable part of the effective gravitational

constant κ2

Ψ , and Sm is the matter contribution to the action as all other fields are included in
χm.

The field equations for the flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) line element
ds2 = −dt2 +a(t)2

(

dr2 + r2(dθ2 + sin2 θ dϕ2)
)

and perfect barotropic fluid matter, p = wρ, read

H2 = −H
Ψ̇

Ψ
+

1

6

Ψ̇2

Ψ2
ω(Ψ) +

κ2

3

ρ

Ψ
+

κ2

3

V (Ψ)

Ψ
, (2)

2Ḣ + 3H2 = −2H
Ψ̇

Ψ
− 1

2

Ψ̇2

Ψ2
ω(Ψ) − Ψ̈

Ψ
− κ2

Ψ
wρ +

κ2

Ψ
V (Ψ) , (3)

Ψ̈ = −3HΨ̇ − 1

2ω(Ψ) + 3

dω(Ψ)

dΨ
Ψ̇2 +

κ2

2ω(Ψ) + 3
(1 − 3w) ρ

+
2κ2

2ω(Ψ) + 3

[

2V (Ψ) − Ψ
dV (Ψ)

dΨ

]

, (4)

ρ̇ = −3H (w + 1) ρ (5)

where H ≡ ȧ/a and we will assume that ρ ≥ 0.
Upon introducing the notation

A(Ψ) ≡ d

dΨ

(

1

2ω(Ψ) + 3

)

, W (Ψ) ≡ 2κ2
(

2V (Ψ) − dV (Ψ)

dΨ
Ψ

)

(6)
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and substituting H from Eq. (2) into Eq. (4), we get

Ψ̈ =

(

3

2Ψ
+

1

2
A(Ψ)(2ω(Ψ) + 3)

)

Ψ̇2 +
W (Ψ)

2ω(Ψ) + 3
+

κ2

2ω(Ψ) + 3
(1 − 3w)ρ

± 1

2Ψ

√

3(2ω(Ψ) + 3)Ψ̇2 + 12κ2Ψ(ρ + V (Ψ)) Ψ̇ . (7)

In the limit 1
(2ω(Ψ)+3) → 0, Ψ̇ 6= 0 the system faces a spacetime curvature singularity, since H

diverges, and likewise behaves Ψ̈. At first the limit (a) 1
(2ω(Ψ)+3) → 0 and (b) Ψ̇ → 0 seems only

slightly less mathematically precarious for the equations are left just indeterminate (contain
terms 0

0). Yet the latter situation is of particular physical importance, as the experiments in the
Solar System (where local matter density dominates over the scalar potential), i.e. the limits of
observed values of PPN parameters and the time variation of the gravitational constant suggest
the present cosmological background value of the scalar field to be very close to the limit (a)-(b)
[18].

Let us define Ψ⋆ by 1
2ω(Ψ⋆)+3 = 0 and and focus upon the solutions near this point,

Ψ = Ψ⋆ + x(t) , Ψ̇ = Ψ̇⋆ + ẋ(t) = ẋ(t) , (8)

where x and ẋ span the neighbourhood of first order small distance from (Ψ⋆, Ψ̇⋆). As phase
space variables x and ẋ are independent from each other, their ratio ẋ/x is indeterminate at
(x = 0, ẋ = 0).

Under additional mathematical assumptions, (c) A⋆ ≡ A(Ψ⋆) 6= 0 and (d) 1
2ω+3 is

differentiable at Ψ⋆, we can expand in series

1

2ω(Ψ) + 3
=

1

2ω(Ψ⋆) + 3
+ A⋆x + ... ≈ A⋆x , (9)

(2ω(Ψ) + 3)Ψ̇2 =
ẋ2

0 + A⋆x + . . .
=

ẋ2

A⋆x
(1 + O(x)) ≈ ẋ2

A⋆x
. (10)

The latter result actually informs us that in order to avoid a spacetime singularity ẋ2

x
must not

diverge, hence we should treat x(t) and ẋ(t) as the same order (small) quantities. In passing
let us remark that in our previous papers [22, 23, 24, 25] we have tentatively called (a)-(d) ‘the
limit of general relativity’ since under these conditions the set of STG cosmological equations
(2)-(5) reduces to those of pure GR (with a cosmological constant if V (Ψ⋆) 6= 0).

3. Potential Dominated Regime

In this section we focus upon the case when matter density can be neglected in favor of the
potential (i.e. take V 6= 0, ρ = 0) and consider the limit (a)-(d). In approximate equations we

must recognize the term ẋ2

x
as being of the same order as x and ẋ. Thus, keeping the term ẋ2

x

in the approximation of Eq. (7) we obtain a second order nonlinear differential equation [22]

ẍ + C1 ẋ − C2 x =
ẋ2

2x
. (11)

Here we have defined the values of some parameters at (Ψ⋆, Ψ̇⋆) as

C1 ≡ ±
√

3κ2V (Ψ⋆)

Ψ⋆
, C2 ≡ A⋆ W⋆ , (12)
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where W⋆ ≡ W (Ψ⋆) and V (Ψ⋆) ≥ 0. The three parameters A⋆, W⋆, C1 determine the leading
terms in expansions of the two functions ω(Ψ), V (Ψ) which specify a STG. The phase trajectories
for the nonlinear approximate system correspondng to equation (11) near GR point are classified
and analysed in Ref. [22]. The fixed points and the corresponding eigenvalues in the case of linear
system (neglecting the term ẋ2/2x) are found in Refs. [36, 37].

The general solution of Eq. (11) reads [24]

±x(t) =























e−C1t
[

M1e
1

2
t
√

C − M2e
− 1

2
t
√

C
]2

, C > 0 ,

e−C1t
[

M̃1t − M̃2

]2
, C = 0 ,

e−C1t
[

N1 sin(1
2t
√

|C|) − N2 cos(1
2 t
√

|C|)
]2

, C < 0 ,

(13)

where C =
√

C2
1 + 2C2 and M1, M2, M̃1 M̃2, N1, N2 are constants of integration determined by

initial conditions. In order to successfully meet the observational constraints, let us now focus
upon solutions which approach the GR limit asymptotically in time (PPN parameters approach
the GR values β = 1 and γ = 1 as t → ∞). Our results [22, 24] allow one to immediately decide
whether any STG with particular ω(Ψ) and V (Ψ) is viable or not. Furthermore, the behavior of
solutions which approach GR can be classified under two characteristic types: (i) exponential or
linear exponential convergence (C > 0 or C = 0), (ii) damped oscillations around GR (C < 0).

For the evolution of the universe in scalar-tensor cosmology we may envisage a realistic
scenario where during the matter domination era the scalar field has already dynamically relaxed
sufficiently close to the GR limit. Later when the cosmological energy density of the potential
becomes more significant, the solutions given here can be taken to provide a rough description.
As an illustration for dynamics given by the solution (13), we use the effective barotropic index
which determines the behaviour of dark energy. The same approximation scheme applied to the
scalar field equation (7) allows to expand the effective barotropic index as (the expansion of H,
Ḣ and PPN parameters, see Ref. [24])

weff ≡ −1 − 2Ḣ

3H2
≈ −1 +

1

C2
1Ψ⋆

[

3

2

(

1 +
1

Ψ⋆A⋆

)

ẋ2

x
− 4C1ẋ + 3C2x

]

+ . . . . (14)

Among the models for which the ‘GR point’ works as an attractor, we can determine whether a
model in the theory characterized by distinct parameters (C1, C2, A⋆) approaches the de Sitter
spacetime from the quintessence side (weff > −1) or from the phantom side (weff < −1). Note
that a necessary condition for crossing the so-called phantom divide, weff = −1, is vanishing
of the second term in Eq. (14). Depending on the model, exponential solutions may cross the
phantom divide line at most twice before approaching weff = −1 from either above or below. In
the oscillating type of solutions the dark energy effective barotropic index oscillates either in the
quintessence regime (weff > −1), phantom regime (weff < −1), or crossing the phantom divide
line once or twice during each period.

As an illustration, Figure 1 depicts the dynamics of weff for three sample solutions in different
STG models:

ω(Ψ) =
3Ψ

2(1 − Ψ)
, κ2V (Ψ) =

2

3

[

1 + (1 − Ψ)2
]

, (15)

ω(Ψ) =
5Ψ

7(1 − Ψ)
, κ2V (Ψ) = 3e3(1−Ψ) , (16)

ω(Ψ) =
Ψ

2(1 − Ψ)
, κ2V (Ψ) = 3e3(1−Ψ) . (17)
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Figure 1. Examples of the time evolution of weff for different STG models: (15) left, (16)
middle, (17) right. The evolution is measured in the units of the analogue of Hubble time,
T = H⋆ t = C1

3 t, and present moment is chosen to be at T = 0.

The first model belongs to the class with C > 0, C1 > 0, C2 < 0 and the sample solution shows
a monotonic quintessence type convergence towards de Sitter. The second model belongs to the
class with C < 0, C1 > 0, C2 < 0 and is characterized by damped oscillations in the quintessence
regime. The third model also belongs to the same class as previous example but exhibits
oscillations through the phantom divide line. The initial conditions of these solutions have been
chosen such that the corresponding PPN parameters are within observationally allowed limits.
We may notice that it is possible to have the period of oscillations to be about the same order
of magnitude as the age of the Universe.

4. Matter Dominated Regime

In what follows we focus to the era when the dust matter density dominates over potential (i.e.
take ρ 6= 0, w = 0, V = 0) and consider the limit (a)-(d). The system (2)-(5) contains three
variables {Ψ,H, ρ}, but one of them is related to the others via the Friedmann constraint (2).
Upon eliminating ρ we have two equations [25]

Ψ̈ = −3HΨ̇ +
1

2
(2ω + 3)A(Ψ)Ψ̇2 +

1

(2ω + 3)

(

3ΨH2 + 3HΨ̇ − Ψ̇2

2Ψ
ω

)

, (18)

Ḣ = −3

2
H2 + H

Ψ̇

2Ψ
− Ψ̇2

4Ψ2
ω − 1

4
(2ω + 3)A(Ψ)

Ψ̇2

Ψ

− 1

2(2ω + 3)

(

3H2 + 3H
Ψ̇

Ψ
− Ψ̇2

2Ψ2
ω

)

, (19)

where we have introduced notation (6).
Let us Taylor expand the functions in Eqs. (18), (19) using approximations (8), (9) and an

additional approximation for the Hubble parameter

H(t) = H⋆(t) + h(t) . (20)

We assume that H⋆(t) satisfies the equation Ḣ⋆ = −3
2H2

⋆ as in the Friedmann solution of the
dust dominated pure GR model. It determines the time evolution of H⋆ to be

H⋆ =
2

3(t − ts)
. (21)

Here ts is a constant of integration which fixes the beginning of time scale; in what follows we
choose ts = 0, t > 0.
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We take x, ẋ, h, ẋ2/x to be of the same order small quantities. Approximate first order
equations now read with H⋆ given by Eq. (21) as

ẍ =
ẋ2

2x
− 3H⋆ẋ + 3A⋆Ψ⋆H

2
⋆x , (22)

ḣ + 3H⋆h = − 1

4Ψ⋆

(

1 +
1

2A⋆Ψ⋆

)

ẋ2

x
+

1

2Ψ⋆
H⋆ẋ − 3

2
A⋆H

2
⋆x . (23)

The effective barotropic index is

weff ≡ −1 − 2Ḣ

3H2
≈ − 2

3H2
⋆

(

ḣ + 3H⋆h
)

. (24)

Notice that Eqs. (22), (23) contain time t explicitly due to H⋆ (21). This means that
the corresponding system of first order equations is not autonomous and the standard phase
space analysis is not applicable. However, we can straightforwardly integrate Eqs. (22), (23) in
cosmological time and analyse the behaviour of solutions in the neighbourhood of the limit of
general relativity. It turns out that the type of solution x(t) of Eq. (22) depends on the constant

D ≡ 1 +
8

3
A⋆Ψ⋆ (25)

which characterizes the underlying STG. Knowing solutions x(t) we can also find the solutions
h(t) of Eq. (23) and determine the effective barotropic index weff from Eq. (24).

The general solution of Eq. (22) reads [25]

±x(t) =



























1
t

[

M1t
√

D

2 − M2t
−
√

D

2

]2

, D > 0 ,

1
t

[

M̃1 ln t − M̃2

]2
, D = 0 ,

1
t

[

N1 sin(1
2

√

|D| ln t) − N2 cos(1
2

√

|D| ln t)
]2

, D < 0 .

(26)

Here M1, M2, M̃1 M̃2, N1, N2 are constants of integration and are related to the initial data
x∗ = x(t∗), ẋ∗ = ẋ(t∗) at some arbitrary time t∗. The ± follows from an invariance property of
Eq. (22) under reflection x → −x, i.e. it allows solutions which can lie in the region Ψ > Ψ⋆

(x > 0) or Ψ < Ψ⋆ (x < 0).
Let us make some general comments about the solutions, while the detailed analysis as

well as solutions for h(t) is presented in the recent paper [25]. For the first class of solutions,
D > 0, we can conclude that asymptotically at t → ∞ there are two distinctive behaviors.
For STGs with

√
D < 1 (i.e. A⋆Ψ⋆ < 0) all cosmological solutions irrespective of their

initial conditions monotonically approach the general relativistic dust matter FLRW cosmology,
Ψ(t) → Ψ⋆ = const., H(t) → H⋆(t) = 2/(3t), weff(t) → 0, since all first order corrections
vanish at this limit. On the other hand STGs with

√
D > 1 (i.e. A⋆Ψ⋆ > 0) allow only

solutions that will diverge, x(t) → ∞, h(t) → ∞, weff(t) → ∞, meaning that solutions in
these theories can linger near general relativity only for a certain period, while as time evolves
they will leave and the approximation scheme will break down eventually. The second class of
solutions, D = 0, are of marginal interest due to the fine-tuning of the STG by the condition
A⋆Ψ⋆ = −3

8 . For the third class of solutions, D < 0, the first order corrections to the GR FLRW
dust cosmological model are proportional to negative powers of cosmological time t, so they
vanish at t → ∞ and solutions approach the general relativistic dust matter cosmology in the
manner of damped oscillations. The amplitude of the deviations monotonically decreases while
the period monotonically increases in time.
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Figure 2. Examples of the time evolution of weff for different STG models: (27) left and (28)
right. The evolution is measured in the units of the analogue of Hubble time, T = H∗ t and the
initial conditions are fixed at T∗ = 1.

As an illustration, Figure 2 depicts the dynamics of weff for two sample solutions in different
STG models:

ω(Ψ) =
5Ψ

3(1 − Ψ)
, (27)

ω(Ψ) =
Ψ

9(1 − Ψ)
. (28)

The first model belongs to the class with D > 0 and the sample solution shows a monotonic
convergence towards weff = 0. The second model belongs to the class with D < 0 and is
characterized by damped oscillations around weff = 0.

Finally, let us once again summarize the conditions of the models with the aim to view
different epochs as parts of a single cosmological scenario. In both cases there are general
conditions for solutions to converge towards the GR value Ψ⋆ asymptotically in time: in the
dust dominated model it reads

A⋆Ψ⋆ ≡
[

d

dΨ

(

1

2ω(Ψ) + 3

)

Ψ

]

⋆

< 0 (29)

and in the potential dominated model [22]

V (Ψ⋆) > 0 ,

[

Ψ

2V

dV

dΨ

]

⋆

< 1 . (30)

A realistic STG cosmological scenario compatible with observations would better need to have
GR as an attractor in both dust dominated and matter dominated regimes. Therefore for
a credible STG both conditions (29) and (30) must be satisfied, thus constraining the set of
functions ω(Ψ) and V (Ψ) one can consider for constructing a viable model.

5. Summary

We have derived and solved nonlinear approximate equations for small deviations of the scalar
field in the framework of general STG FLRW flat cosmological models in two eras near the limit
of general relativity as favored by various observational constraints. First we look the era when
the energy density of the scalar potential dominates over the energy density of the ordinary
matter and the Universe has evolved close to the limit of GR (which acts as an attractor for
certain classes of STG). Secondly we consider the era of dust dominated matter close to the
limit of GR. The behaviour of solutions can be used to analyse the cosmological expansion near
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the ‘GR point’ where the weak field constraints are satisfied. The solutions which approach
GR can be classified under two characteristic types: (a) exponential or polynomial convergence,
and (b) damped oscillations around general relativity. The classes of STGs which contain these
solutions are of particular interest since there is a dynamical mechanism naturally driving the
solutions to satisfy observational constraints. On the other hand, they are good candidates to
explain possible deviations from the ΛCDM. Combining the results of the dust dominated epoch
with results of the potential dominated regime, provides a reasonable viability filter for STG
models in terms of the conditions (29),(30).
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