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Abstract. We study a type IIB superstring compactification in the presence of nong-
eometric fluxes. We study the non supersymmetric solutions to the equations of motion. The
corresponding vacuum is found by employing a genetic algorithm constrained by the Bianchi
identities. We explore the space of the non supersymmetric vacua and look for possible De
Sitter solutions. We find that such vacua are possible if supersymmetry is broken by all the
three moduli.

1. Introduction
After performing a string compactification from ten dimensions to four, the effective theory
corresponds to a gauge supergravity theory coupled to light scalar fields [1]. These scalar fields
parametrize the size and shape of the compact space and define the coupling constants and
masses of the remaining fields of the effective theory. So in order to construct a phenomenolog-
ical attractive theory they must acquire values which are compatible with the observed values.
In the last years several ways have been proposed in order to stabilize all the moduli, mainly
by turning on fluxes on the compact space [3, 4] and by considering the presence of exotic in-
gredients such as orientifolds, and generalized structures on the internal space. Some of them
breake supersymmetry in a localized way [5]. Some other examples of moduli stabilization are
by mean of non perturbative effects on the Kähler potential or on the superpotential [5, 6, 7].
One interesting approach is to consider the possibility to obtain a classical de Sitter vacuum in
order to explain the accelerated universe we observe [2].

The parameters of the effective gauged supergravity theory are associated either to the fluxes
or to features of the background in which the compactification is performed. However in some
cases fluxes which have a natural interpretation in a theory may not have a obvious interpreta-
tion in its T-dual part [8, 9, 10, 11, 12].

In the context of moduli compactification by fluxes it was argued that a compactification on
space manifolds with negative curvature [13] leads to a lift in the vacua and suggests that De
Sitter space can be constructed through these manifolds. However the stability of the vacua is
in many cases only metastable [14]. In particular the twisted torus is an example of a nega-
tively curvature manifold. The twist on the torus can be interpreted as a geometric flux in the
context of Type IIB string theory which is T dual to a Type IIA in which the geometric fluxes
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are mapped to a kind of flux which cannot be interpreted globally as a geometrical feature of
the space time manifold. So this compactification which cannot be interpreted as a space time
manifold leads to the notion of non geometric fluxes.

In order to get an intuition of the non-geometric fluxes consider for example a compactification
on a six dimensional torus T 6 threaded with NS-NS 3-form flux Habc where a, b, ... ∈ 1, 2, ..., 6
with nonzero values in the compact dimensions.The corresponding dimensional reduction is un-
derstood as a class of generalized Scherk-Schawrz dimensional reduction [15, 16, 17, 18, 19].
Under a T-duality, for example in direction a, the H−flux is mapped to a geometric flux asso-
ciated with a twist in the torus topology. In the presence of this geometric flux, the metric on
the twisted torus acquires a contribution which can be written as (dxa − fabcxcdxb)2, where fabc
is integrally quantized and characterizes the geometric flux of the compactification.

Even in the presence of geometric flux fabc, however, we can perform another T-duality on
direction b, since the metric can be chosen to be independent of the coordinate xb. Carrying
out this T-duality explicitly leads to a dual torus, which is locally geometric, but it cannot be
described globally in terms of a fixed geometry, due to the appearance of non-geometric duality
transformation in the boundary conditions which patch together local descriptions of the com-
pactified space. This non-geometric flux which arise after a second T-duality transformation,
is labeled as Qabc . It is known that the related superpotential depends on all the moduli of the
compactification, implying that it is possible to look at classical level, for De sitter solutions.
Therefore, we shall study type IIB string compactifications on a six dimensional torus threaded
with non-geometric fluxes, besides the usual 3-form fluxes, in order to look for positive valued
vacua.

Our work is organized as follows: in section 2, a type IIB compactification on a non-geometric
torus is presented by preserving only one of the supersymmetries. In section 3 the constraints
that the fluxes must satisfy are presented together with a set of solutions of these constraints. In
section 4 we show a systematic analysis of the equations of motion by breaking supersymmetry
through one or several moduli. In section 5, the effective scalar potential is constructed for each
solution previously found. Finally in section 6 we give some final comments and perspectives of
the work.

2. Flux compactification
We consider a Type IIB compactification with O3-planes transverse to the compact directions in
order to avoid tadpole conditions in the presence of 3-form fluxes [20, 21]. The final N = 1, D = 4
contents include three complex moduli, namely: axio-dilaton S, a complex structure moduli τ
and a Kähler moduli U .

We consider the standard tree-level Kähler potential given by

K = −3ln (−i(τ − τ̄))− 3ln
(
−i(U − Ū)

)
− ln

(
−i(S − S̄)

)
. (1)

The contribution of the non-geometric fluxes to the superpotential is given in [8], and it is ob-
tained by adding a term to the the well known Gukov-Vafa-Witten [22]

W =

∫
(F3 − SH3 −QU) ∧ Ω. (2)
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By applying the Buscher rules to a type IIB torus compactification in the presence of a NS-NS
3-form flux, the metric of the non-geometric torus is derived and it is given by

ds2 = 1
1+Q2z2

(dx2 + dy2) + dz2.

This background is characterized by the non-geometric flux Qbca .

The N = 1 four dimensional effective gauged supergravity scalar potential is given by the
standard scalar potential [23]. The equations for a supersymmetric vacuum are DiW = 0 which
correspond to the F terms. For simplicity, we shall consider a six-dimensional torus made of
three identical copies. This reduces the number of moduli which, as recently discussed, increases
the chances to obtain De Sitter vacua [13]. Hence, by defining the complex coordinates on each
torus as za = xα + τxi where α = 1, 3, 5 and i = 2, 4, 6, the T-dual invariant superpotential is
given by

W = a0 − 3a1τ + 3a2τ
2 − a3τ3 + S(b0 − 3b1τ + 3b2τ

2 − b3τ3)
+ 3U(c0 + (c̃1 + ĉ1 + č1)τ + (c̃2 + ĉ2 + č2)τ

2 − c3τ3) (3)

where the coefficients are the components of each fluxes over integrated over a cycle. The coef-
ficients are related with a flux as is indicated in the Table 1.

Table 1. Fluxes in the duality invariant superpotential.

Term IIB Flux integer Integer flux

1 F̄ijk a0
τ F̄ijγ a1
τ2 F̄iβγ a2
τ3 F̄αβγ a3
S H̄ijk b0
U Q̄αβk c0
Sτ H̄αjk b1
Uτ Q̄αjk ,Q̄iβk , Q̄βγα č1,ĉ1,c̃1
Sτ2 H̄iβγ b2
Uτ2 Q̄iβγ ,Q̄γiβ ,Q̄ijk č2,ĉ2,c̃2
Sτ3 H̄αβγ b3
Uτ3 Q̄ijγ c3

Here we have adopted the notation given in [10] in which F̄abc is the integrated flux over the
cycle abc. Taking the isotropic case where F̄ijγ = F̄kiβ = F̄jkα there is only one representative
flux for any given combination of indices. The same notation holds for the rest of fluxes.
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As mentioned above, the presence of fluxes contributes with an amount of internal energy
which must by cancelled by the addition of a negative tensioned object, in order to cancel the
tadpole. These requirements lead to a set of constraints that the fluxes must satisfy. The R-R
constraints for the fluxes are;

a0b3 − 3a1b2 + 3a2b1 − a3b0 = 16 (4)

a0c3 + a1(č2 + ĉ2 − c̃2)− a2((č1 + ĉ1 − c̃1)− a3c0 = 0 (5)

There are also constraints of the same nature on the NS fluxes which are obtained starting
by the Bianchi identity dH = 0 and its T-dual constraints. There are a total of 8 constraints
given by

c0b2 − c̃1b1 + ĉ1b1 − č2b0 = 0, (6)

č1b3 − ĉ2b2 + c̃2b2 − c3b1 = 0, (7)

c0b3 − c̃1b2 + ĉ1b2 − č2b1 = 0, (8)

č1b2 − ĉ2b1 + c̃2b1 − c3b0 = 0, (9)

c0c̃2 − č21 + c̃1ĉ1 − ĉ2c0 = 0, (10)

c3c̃1 − č22 + c̃2ĉ2 − ĉ1c3 = 0, (11)

c3c0 − č2ĉ1 + c̃2č1 − ĉ1c̃2 = 0, (12)

ĉ2c̃1 − c̃1č2 + č1ĉ2 − c0c3 = 0. (13)

For a formal derivation of these constraints, see [9].

3. Solutions of the equations of motion
Since we are not considering the presence of D-branes, there are no D-terms in the superpo-
tential. and breaking SUSY is achieved only through the F terms. Our model consists only on
three moduli, namely the complex structure τ , the Kähler modulus U and the axio-dilaton S. A
complete solution of the supersymmetric cases is presented in [11] with AdS vacua as expected.
However by breaking SUSY we shall explore the possibility to obtain classical De Sitter vacua.

Breaking SUSY through only one of the moduli can be achieved in three forms. First, break-
ing SUSY through the axio-dilaton implies that the F terms of the complex structure and Kähler
moduli must be zero. However the condition of a zero Kähler derivate through S and U direc-
tions violates the tadpole condition. Second, breaking SUSY through the Kähler modulus leads
to zero volume of the compact space or an infinite coupling constant eφ where our perturbative
approach is not valid. Finally SUSY breaking through the complex structure modulus implies
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that the physical solutions must satisfy that Im(P2P̄3) = 0. Solving this equation for the com-
plex structure provides a way to a stabilize this modulus. The SUSY equations of motion for
U and S can be solved, providing a stabilization of the axio-dilaton S and leaving unfixed the
Kähler modulus. So the stabilization of the Kähler modulus depends on the minima that the
scalar potential acquires. This possibility is studied in the following sections.

On the other hand, breaking SUSY through U and S leads to a violation of the Bianchi
identity. This follows from the fact that the solution to the equation of motion implies that
P1(τ) = P2(τ) = P3(τ), so the fluxes associated with similar terms in τ must have the same
value. However this condition leads to a1 = b1 = 2c1 − c̃1 and a2 = b2 = c̃2 − 2c2 which implies
that the first Bianchi identity must be equal to zero which clearly violates the tadpole condition.
SUSY breakdown through the Kähler moduli and the axio-dilaton leads to unphysical condi-
tions which include a zero volume of the compact space and an infinite coupling constant as well.

Finally breaking SUSY through all the moduli implies that all the moduli must be stabilized
dynamically through reaching the minima of the scalar potential. The values of the correspond-
ing fluxes must satisfy the Bianchi identities and the moduli must acquire positive values.

In order to explore the space of solutions, we employ a genetic algorithm, and we look for the
minimization of the scalar potential. The solutions of the equations of motion, without taking
into account the case in which the scalar potential vanishes at the minimum, are summarized
in the Table 2. It is important to stress out that a configuration of fluxes which satisfy the
solutions does not satisfy automatically the tadpole conditions. Table 2 only remarks the fact
that it is possible to find a consistent flux configuration.

Table 2. Solutions to the equations of motion.

F term Tadpole condition Physical solution

Dτ=0, DS=0, DU 6=0 No satisfied Im(S) = 0, Im(U) = 0
Dτ=0, DS 6=0, DU=0 No satisfied Im(S) = 0, Im(U) = 0
Dτ 6=0, DS=0, DU=0 Satisfied Im(P2P̄3) = 0
Dτ 6=0, DS 6=0, DU=0 Satisfied Im(S), Im(U) = 0
Dτ 6=0, DS=0, DU 6=0 Satisfied Im(S), Im(U) = 0
Dτ=0, DS 6=0, DU 6=0 No satisfied ai = bi = ci

4. Discussion of the vacua
In order to get a set of solutions to the equations of motion which stabilize all the moduli, a
genetic algorithm is employed.

Genetic algorithms are probabilistic global search and optimization methods that mimic the
metaphor of natural biological evolution. The computational procedure operates on a set of
initial values for the moduli (population) which gives a potential solution by applying the prin-
ciple of survival of the fittest to produce successively better approximations to a minima of the
scalar potential. At each generation of the numerical procedure, a new set of moduli is created
by the process of selecting individuals according to their level of fitness in the moduli space and
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Figure 1. Logarithmic plot of g vs Λ for breaking SUSY through complex structure moduli.

reproducing them using feasible adaptation. This process leads to the evolution of moduli that
are better suited to the minimum value of the scalar potential than the set of moduli from which
they were created, so the algorithm successively improve the solution.

In addition we have introduced the SUSY constraints to the genetic algorithm . The numer-
ical procedure begins with a solution to the RR and NS constraints. The solution is restricted
to positive even fluxes. Once a solution to the constraints is obtained the genetic algorithm
initializes with random values on the moduli. The iterative process proceeds to find a set of
moduli which gives the minima value of the scalar potential. Then the constraints are check
after each iteration until the maxima tolerance is reached.

In general the algebraic solution to the constraints is only valid if some of the fluxes is non
zero. For example, solving the Equation (6) for a3 is only valid if b0 is different of zero. So the
set of solutions generated turn off randomly fluxes only when the constraints equations does not
yield to unphysical solutions.

In contrast to the supersymmetric solution studied in [9], where all the moduli are stabilized
in a supersymmetric vacuum, we consider only two cases: the stabilization of four real moduli
using the supersymmetric conditions for U and S while the remaining two real moduli, related to
the complex structure τ are stabilized by minimizing the scalar potential, and the stabilization of
all moduli by minimizing the scalar potential where supersymmetry is broken through all moduli.

Breaking SUSY through the complex structure τ implies the existence of De Sitter solutions.
The correspondingg−Λ space distribution is shown in Figure 1. We find that small cosmological
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Figure 2. Logarithmic plot of g vs V ol6 for breaking SUSY through complex structure moduli.

constants are very unfavored since we see that almost all these solutions are related with a large
string coupling constant (fixed by the stabilization of the axio-dilaton), rendering our solutions
unviable since they are far away from the perturbative regime where our approach is valid.

On the other hand, the vacua distribution in terms of the internal volume, lies in a region of
small volume (small Kähler modulus) suggesting as well that the supergravity approximation is
not valid.

In contrast to the above models, if SUSY is broken through all the moduli the g − Λ distri-
bution (Figure 3) seems to lie on a region of small coupling constant. The corresponding vacua
have a positive value for all solutions. Finally as observed in Figure 4, the set of solutions in
this case is constraint in a region in which the internal volume is big (an order of 104) implying
that the supergravity approach we have taken is indeed valid. Therefore, we have found a rich
region of De Sitter vacua in which all our approximations can be thrust. An extended analysis
about their stability and the study of the existence of inflation conditions are under research [24].

5. Final comments
The present work shows a landscape of classical De Sitter vacua constructed by a Type IIB
compactification on a six-dimensional torus threaded with NS-NS, RR and non-geometric fluxes
and in the presence of an orientifold 3-plane. This constructions leads to aN = 1 supersymmetric
four-dimensional space-time. In effective theory there are three moduli related to the complex
structure, Kähler modulus and the axio-dilaton field S of the corresponding three identical
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Figure 3. Logarithmic plot of g vs Λ for breaking SUSY through all the moduli.

two-dimensional torus.
We find that the viability of the solutions depends on which supersymmetric conditions are

satisfied. There are only two cases in which physical solutions can be achieved and they corre-
spond to the cases in which supersymmetry is broken through the complex structure or thorugh
all moduli.

The first case leads to vacua in which the string coupling constant is large and the internal
volume is very small. In such scenario our perturbative approach and use of supergravity is not
valid.

However, for the second case we find suitable physical conditions in which our approximations
are valid. Although the cosmological constant is positive and small, still it seems that fine-tuning
is required. For these cases, we consider is worth to study whether they are compatible with
inflation scenarios. For that it is necessary to study some extra features as their stability. We
shall explore cosmological models within these vacua in a forthcoming work.
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