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Abstract. Prognostics and health management (PHM) has been an important part to guarantee 
the reliability and safety of complex systems. Design for testability (DFT) developed 
concurrently with system design is considered as a fundamental way to improve PHM 
performance, and sensor selection and optimization (SSO) is one of the important parts in DFT. 
To address the problem that testability requirement analysis in the existing SSO models does 
not take test uncertainty in actual scenario into account, fault detection uncertainty is analyzed 
from the view of fault attributes, sensor attributes and fault-sensor matching attributes 
qualitatively. And then, quantitative uncertainty analysis is given, which assigns a rational 
confidence level to fault size. A case is presented to demonstrate the proposed methodology for 
an electromechanical servo-controlled system, and application results show the proposed 
approach is reasonable and feasible. 

1. Introduction 
Catastrophes caused by aerospace system faults in recent years impel people to explore fault 
mechanisms and the corresponding countermeasures. Prognostics and Health Management (PHM), 
which generally combines sensing and interpretation of environmental, operational, and performance-
related parameters to assess the health of a system and predict remaining useful life [1], is significant 
to improve complex system safety and reliability[2-3]. Obviously, information sensing and test are the 
foundation of PHM [1, 4-5], and some studies and applications also show the PHM performance 
mainly depends on test information rather than on the adopted models or algorithms [6]. Testability is 
a design characteristic which allows the status (operable, inoperable, or degraded) of an item to be 
determined and the isolation of faults within the item to be performed in a timely manner [7]. The 
design scheme which satisfies system testability requirements is design for testability (DFT). The 
traditional DFT is developed through an ad hoc heuristic process rather than through a system method 
(William, 20078), which will result in high cost, long period, etc. At present, model-based DFT is 
becoming popular, which supports for concurrent design very well, and sensor selection and 
optimization (SSO) is one of the important contents in DFT. 
                                                      
1  Corresponding author. E-mail address: ysmcsu@163.com 
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With the great development of PHM methodology, many researchers and institutes have paid 
attention to SSO problems for PHM. NASA has studied sensor optimization configuration technology 
for engine health management since 2005, and proposed a famous systematical sensor selection 
strategy (S4), and the researchers also studied some experiment validation and verification for health 
monitoring and management of some aerospace systems such as turbo engine, RS-68 rocket engine [5, 
9-11]. Cheng, S. et al studied sensor selection and optimization for PHM systematically. They also 
proposed the state-of-art sensor systems for PHM and further discussed the emerging trends in 
technologies of sensor systems for PHM [1, 4, 12]. Kwon, D. et al also paid much attention to sensor 
selection for PHM [13]. Xu, Z. et al proposed a fault tolerant sensor architecture and realized the 
architecture through the design of a dual mode humidity/pressure MEMS sensors with an integrated 
temperature function for health and usage monitoring [14]. Novis, A. et al analyzed the characteristics 
of sensor system used in real PHM environment in order to improve system diagnostic capability [15]. 
Baer, W. G. et al constructed an open standard smart sensor structure, and designed a sensor system 
for PHM [16].  

In the existing SSO models, testability requirement model is mainly based on the assumption that: 
if a sensor relates to a fault, the fault will be detected by the sensor with probability one when the fault 
occurs. The certainty assumption is usually applicable for digital systems due to its good modularity 
and fault propagation certainty. However, for complex systems usually consisting of mechatronics, 
electronics and hydraulics, fault detection probability is closely related to test uncertainty. Generally, 
test uncertainty may arise from two major sources: 1) environment uncertainty is a common type of 
uncertainty source, which usually includes temperature, vibration, humidity and electromagnetic 
interference; 2) measurement uncertain is usually introduced during the measurement process, which 
often consists of sensor reliability, human error, calibration bias. Test uncertainty needs to be 
addressed since uncertainty is always related to the measurement performance and is a key factor for 
SSO for complex system PHM. 

2. Fault detection uncertainty analysis 

2.1.  Qualitative analysis 

2.1.1. Fault attributes analysis. Fault detection probability is obviously affected by fault 
characteristics. As we know, if fault symptom is distinctive and stable, the fault will be detected with 
high probability; besides, fault detection probability will increase with the decrease of fault detection 
threshold. 

 (1) Fault sensitivity is the relative quantity of fault statistical features. Fault statistical features are 
generally divided into time-domain features and frequency-domain features. Amplitude, peak, root-
mean-square, margin factor, kurtosis are typical time-domain features, while frequency, wavelet 
information entropy and power spectrum are typical frequency-domain features. Fault sensitivity is 
very important for fault early state detection and fault prognostics. Take the pulse fault and wear fault 
of engine as examples to demonstrate the quantitative description of fault sensitivity. Suppose the 
statistical features of the two types of faults are amplitude, then, pulse fault sensitivity is formulated by 
[17]: 
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where Sp is pulse fault sensitivity, M1 and M2 are sample points of feature θ after starting engine three 
seconds and before appearing pulse respectively, θ(k) is the amplitude of the k-th sample point of θ, 
θ(kp) is the amplitude of θ when pulse appears. 
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Based on the same example, wear fault sensitivity is formulated by: 
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where Sw is wear fault sensitivity, M1, M2 and θ(k) have the same meanings with the above equation, L1 
and L2 are sample points of feature θ when appearing wear fault and when closing engine respectively, 
θ(kw) is the amplitude of θ during fault wearing process. 

 (2) Fault stability is the fluctuation degree of fault statistical features, which can be described by 
stable behaviour quantity [18]. Supposing the sample size of certain fault statistical feature θ is N, i.e., 
Θ={θi, i=1,2,…,N}, θi is the i-th measurement value of the statistical feature θ. Normalize Θ: 

 / max( ) { }iΓ Θ Θ γ= =  (3) 

Then, the stable behaviour quantity of Θ can be represented as: 
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SΘ∈[0,1], SΘ=0 means the statistical feature θ is most stable, while SΘ=1 means the statistical 
feature θ is most unstable. Generally, good fault stability is propitious to fault detection and further to 
fault prognostics. 

(3) Fault resolution is the minimum measurable variation of fault symptoms. For each fault, 
minimum observable symptoms can be determined based on expert knowledge or past experiences.  

(4) Time to failure (TTF) is the time duration between the initiation of a fault and the time when 
the failure occurs. For sudden faults (intermittent faults or instantaneous faults), the TTF is 
approximate to zero. 

(5) Fault symptom duration is time duration of fault statistical features, which usually equals to 
TTF. 

(6) Fault detection threshold is the minimal fault symptom quantity which enables the fault 
detectable. Generally, for the same fault severity level, the smaller the fault detection threshold is, the 
higher the fault detection probability is. Of course, the probability of false alarm will increase. 

2.1.2. Sensor attributes analysis. Obviously, sensor attributes will have direct impacts on fault 
detection probability.  

(1) Sensor resolution is the capability that a sensor can measure the minimum variation of inputs. 
(2) Sensor signal to noise ratio (SSNR): a high SSNR implies fault detection uncertainty is small, 

while a low SSNR implies that it is hard for the sensor to detect the fault. Obviously, sensors with a 
low SSNR are not suitable for fault early state detection, so SSO for PHM should take the sensors with 
higher SSNR into account first.  

(3) Sensor failure rate is the probability that a sensor can not execute the stated functions during the 
state time span and at the stated conditions. It is a reliability index of sensors and a function of time. 

(4) Sensor sensitivity is the ratio of output variation at sensor static condition to the corresponding 
input variation.  

2.1.3. Fault-sensor matching attributes analysis. As we know, a sensor is good for a fault does not 
mean the sensor is suitable for another fault. So it is necessary to analyze fault-sensor matching 
attributes.  
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(1) Sensor fault detection timeliness (SFDT) is the ratio of the time span between the initiation of a 
fault (potential failure) and the detection of the fault by the sensor (time to detection, TTD) to the 
duration between the initiation of the fault and the time when the failure occurs (TTF), vide figure 1. 

 

Figure 1. The schematic of SFDT. 

 /SFDT TTD TTF=  (5) 

A low SFDT means that the sensor can detect a fault occurrence at early stage, which is very useful 
for fault prognostics; while a high SFDT means the sensor needs a long time to declare a fault 
occurrence. If SFDT≥1, which implies that the sensor detects a fault when the fault leads to a failure, 
and fault prognostics becomes insignificant. So SSO for PHM should take SFDT into account.  

(2) Sensor fault detection sensitivity (SFDS) is the ratio of a sensor variation of per unit sensor 
resolution to a fault variation of per unit fault resolution. 

 /
/

S sSFDS
F f

Δ Δ
=

Δ Δ
 (6) 

where ΔS is sensor measurement variation, Δs is sensor resolution; ΔF is fault symptom variation, 
Δf is fault resolution. 

(3) Sensor fault trackability (SFT) is the ratio of the time span of fault symptom trackable 
(symptom tracking time, STT) to the time to failure (TTF), vide figure 2. 

Initiation fault
(potential failure)

Fault 
detection

Failure 
occurrence

TTF

STT

t

 

Figure 2. The schematic of SFT. 

 /SFT STT TTF=  (7) 

Generally, when a fault occurs, a sensor can track the fault once it detects the fault until the fault 
evolves to failure. Sensors of these properties can be selected for fault prognostics and health 
evaluation. However, for certain sensors, they will return to normal measurement state after detecting 
and tracking the fault symptoms for a period of time span, so they are not suitable for PHM. 

2.2. Quantitative analysis 
Based on the uncertainty analysis stated above, one can see that fault detection probability depends on 
many factors including fault attributes, sensor attributes and fault-sensor matching attributes, etc. In 
order to analyze fault detection uncertainty quantitatively, sensor fault detection probability (SFDP) is 
normally defined. 

Definition 1: SFDP is the extent to which a sensor can detect the presence of a particular fault, 
which is also called as true positive detection probability. 
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SFDP represents the proportion of fault conditions that a candidate sensor identifies correctly, and 
is used to evaluate the sensor performance. Compared to SFDP, sensor false alarm probability (SFAP) 
represents the proportion of non-fault conditions that a candidate sensor incorrectly identifies as faults, 
which is also called as false positive detection probability. Note that the false negative detection 
probability is the complement of the true positive detection probability and that the true negative 
detection probability is the complement of the false positive detection probability. These two 
quantities fully describe the fault detection uncertainty as shown in figure 3. 

No Fault
（Negative）

No Fault Fault

Ground Truth

True
Negative

False
Negative

False
Positive

True
Positive

Fault
（Positive）

 

Figure 3. Fault detection matrix. 
It is possible that a fault can be detected by more than one sensor, so fault total detection 

probability (FTDP) should be defined based on SFDP. 
Definition 2: FTDP is defined as the extent to which the sensor scheme can detect the presence of a 

particular fault. 
SFDP quantitative uncertainty analysis is as follows [19]. Suppose the actual fault size (e.g. crack 

size) is a, and the sensor measurement is a′, then: 

 ' ( , )a g a P ε= +  (8) 

where P is the measurement condition parameters such as material properties, temperature fluctuations 
and sensor locations, g is a nonlinear function relating actual defect size to sensor measurement, and ε 
is the measurement noise. A commonly used model is [20]: 

 0 1log ' loga aβ β ε= + ⋅ +  (9) 

where ε is normally distributed with zero mean and variance σ2. Based on the model, SFDP can be 
calculated as: 

 1

1

log( , ) ( )thr
aSFDP a a Φ μ
σ

−
=  (10) 

where Φ is the standard normal cumulative distribution function (CDF), athr is the fault detection 
threshold, and 

 0
1 1

1 1

log ,thra β σμ σ
β β

−
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Parameters β0, β1 and σ can be estimated by a maximum likelihood estimator (MLE). Obviously, 
SFDP(a,athr)=P(a′>athr|a). However, the actual defect size a is usually unknown, so confidence bounds 
on a should be analyzed in order to justify the reasonableness and dependability of measurement value 
a′. According to (9), the logarithm actual defect size distribution is: 

 20

1 1

log 'log , ~ (0, )aa Nβ ε ε σ
β β

−
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Obviously, loga is a normal distribution with mean (loga′-β0)/β1 and varianceσ2/β1
2 when the sensor 

measurement is a′. β0, β1 and σ are estimated in the SFDP estimation process. The confidence bounds 
of a can be easily calculated using the lognormal CDF. 

3. Testability requirement model under uncertainty test 

3.1. Testability requirement description for PHM 
Fault diagnostics and fault prognostics are two key technologies in PHM. Testability for PHM should 
enable system faults detectable, isolable and predictable. Three universal testability indexes including 
fault detectable rate (FDR), fault isolatable rate (FIR) and fault predictable ratio (FPR) are defined to 
describe the testability requirements for PHM.  In Ref. [21], FDR and FIR are defined as follows. 

Definition 3: FDR is the ratio of the number of faults detected correctly by sensors to the total 
number of system faults during the stated time span. 

Definition 4: FIR is the ratio of the number of faults isolated correctly to no more than the stated 
replaceable units by sensors during the stated time span to the number of the detected faults during the 
same time span. 

Generally, a fault is detectable doesn’t mean the fault is predictable. Whether a fault is predictable 
or not depends on two aspects: one is the fault should be progressive in nature; the other is the fault 
should be a key component’s fault. 

Definition 5: possible predictable fault (PPF) is a progressive key fault. 
A fault satisfying definition 5 may not be predictable, and fault predictability is also related to 

timely detection and evolution track. If a fault is detected by a sensor when or after the fault leads to a 
failure, fault prognostics becomes insignificant; further, if the evolution process of a fault can not be 
tracked by a sensor, (data driven-based) fault prognostics may not be realized.  

Definition 6: predictable fault (PF) is a PPF of which the early state is detectable and the evolution 
process is trackable.  

Definition 7: FPR is the ratio of the number of PFs determined correctly by sensors to the total 
number of PPFs of system during the stated time span. 

3.2. Testability requirement modeling based on fault-sensor dependency matrix 
Given the fault set is F={f1,f2,…,fm}, and the corresponding failure rate vector is λ=[λ1, λ2 ,…,λm]. The 
complete sensor set used for selection is T={t1,t2,…,tn}, and the corresponding sensor failure rate 
vector is FR=[r1,r2,…,rn]. A matrix B=[bij]m×n is used to denote fault-sensor dependencies. The rows of 
B correspond to faults, and the columns correspond to sensors. Element bij is a two-tuple, bij =(u,v). 
And we suppose that if a sensor can detect the early state of a fault, it also means the sensor can track 
the fault evolution process. Then, if sensor tj can detect fault fi and its early state, then bij =(1,1). If 
sensor tj can detect fault fi but can not detect its early state, bij=(1,0). If sensor tj can’t detect fault fi nor 
its early state, then bij=(0,0), (bij =0 for short). Generally, if a sensor can detect early state of a fault, it 
also means that the sensor can detect the fault, so the case bij =(0,1) will not exist. 

 Given ∪ denotes Boolean variable OR operation. And⊕denotes set XOR operation, when the two 
set are different, the operation result is true. bij(k) denotes the k-th item of the two-tuple bij=(u,v), k=1,2. 
Tfi and Tfj denote the sensor sets which can detect fault fi and fault fj respectively, i.e., Tfi={tj|bij(1)=1, 
tj}, Tfi is also called fault features of fault fi. FPP denotes system PPFs. Given the ambiguity group size 
is L, then, the detectable faults set FD, isolable faults set FI and predictable faults set FP are formulated 
respectively by: 

25th International Congress on Condition Monitoring and Diagnostic Engineering IOP Publishing
Journal of Physics: Conference Series 364 (2012) 012001 doi:10.1088/1742-6596/364/1/012001

6



 
 
 
 
 
 

 

'

'

{ | , (1) 1}

{ | , , , }

{ | , (2) 1}

j

j

j

n

D i i ij
t T

I i i D fi fj j j if F

n

P i i PP D ij
t T

F f f F b

F f f F T T L f F f f

F f f F F b

∈

∈

∈

⎧
= ∈ =⎪

⎪
⎪ = ∈ ⊕ ≤ ∀ ∈ ≠⎨
⎪
⎪ = ∈ =⎪⎩

∑

U

I U

 (13) 

bij(k)=1 has two meanings: one is that sensor tj relates to fault fi; the other is that sensor tj can detect 
fault fi with probability one when fault fi occurs. However, as stated previously, fault detection 
uncertainty is existing objectively in actual scenario. In engineering applications, fault attributes, 
sensor attributes and fault-sensor matching attributes can be divided into sensor function attributes and 
performance attributes. Function attributes mainly refer to sensor reliability, which can be featured by 
sensor failure rate rj (j=1,2,…,n). Performance attributes mainly include SSNR, SFDS, SFDT and SFT, 
which can be featured by ρij [6]. 
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where SFDSij denotes the detection sensitivity of sensor tj to fault fi, SSNRj denotes SNR of sensor tj, 
SFDTij denotes the detection timeliness of sensor tj to fault fi, SFTij is trackability of sensor tj to fault fi. 

Impact of sensor function attributes on detectability and predictability of fault fi can be formulated 
by: 
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Impact of sensor performance attributes on detectability and predictability of fault fi can be 
formulated by: 
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According to (15) and (16), the total detectable and predictable probability of fault fi can be 
formulated by: 
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According to definition 3, 4 and 7, testability requirement model for PHM (FDR, FIR and FPR) 
under uncertainty test can be formulated by: 
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The main goal of SSO is that the designed sensor scheme should satisfy the needs of system 
required FDR, FIR and FPR. 

4. Case demonstration 
Take certain electromechanical servo control system (ESCS) as an example to demonstrated the 
proposed methodology. The ESCS mainly consists of power, controller, driver, motor and reducer, and 
the corresponding failure modes are shown in table 1. 

Table 1. The ESCS failure modes analysis. 

Module Failure mode Fault mechanism Failure 
rate 

Detection 
method Criticality

Power Abnormal 
output (f1) 

Cable failure, element 
aging and damage 1.0×10-5 Voltage Ⅱ 

Controller Abnormal 
output (f2) 

Hard ware failure 0.1×10-5 Logical 
output Ⅱ 

Driver Abnormal 
operation (f3) 

Electrical element 
aging, over-current 

damage 
1.0×10-5 State signal Ⅱ 

Motor 

Non-uniform 
gap between 

stator and 
rotor (f4) 

Manufacturing error, 
improper operation 1.0×10-5 Vibration, 

current, flux Ⅲ 

Open in 
stator coil 

(f5) 

Cable connector 
release, bad welding, 

mechanical stress, 
intensive current 

density 

1.0×10-5 
Current, 
rotating 
speed 

Ⅱ 

Short in 
stator coil 

(f6) 

Moisture, insulation 
aging, over-voltage 1.0×10-5 Temperature Ⅱ 

Grounding in 
stator coil 

(f7) 
Insulation aging 0.1×10-5 Temperature, 

current Ⅱ 

Bear wearing 
(f8) 

Fatigue, bad lubrication 15.0×10-5 Vibration Ⅱ 

Reducer 

Gear fatigue 
wear (f9) 

Bad lubrication, 
alternate stress 20.0×10-5 Vibration Ⅱ 

Bear fatigue 
wear (f10) 

Bad lubrication, fatigue 
stress 15.0×10-5 Vibration Ⅱ 

No output 
(f11) 

Jammed, hard fault 1.0×10-5 Rotating 
speed Ⅱ 
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According to definition 5, The ESCS PPFs is FPP={f1,f2,f3,f8,f9,f10}. The sensors and its attributes for 
selection are shown in table 2. 

Table 2. The sensors and its attributes for selection. 

Sensor Failure rate 
(/1000h) Cost Limit 

number 
Power level signal detection (t1) 0.01 1 10 

Controller level signal detection (t2) 0.01 5 10 
Driver level signal detection (t3) 0.01 10 10 

Motor vibration sensor (t4) 0.001 200 10 
Motor stator current sensor (t5) 0.001 150 10 
Motor rotating speed optical-

electricity encoder (t6) 
0.01 1000 10 

Motor stator temperature sensor (t7) 0.01 100 10 
Reducer vibration sensor (t8) 0.001 200 10 

Reducer rotating speed optical-
electricity encoder (t9) 

0.01 1000 10 

 
The ESCS fault-sensor dependency matrix is shown in table 3. 

Table 3. The fault-sensor dependency matrix of ESCS. 

 t1 t2 t3 t4 t5 t6 t7 t8 t9 
f1 (1,1) 0 0 0 0 0 0 0 0 
f2 0 (1,1) 0 0 0 0 0 0 0 
f3 0 0 (1,1) 0 0 0 0 0 0 
f4 0 0 0 (1,1) (1,1) (1,1) 0 0 0 
f5 0 0 0 0 (1,0) (1,0) 0 0 0 
f6 0 0 0 0 0 (1,0) (1,0) 0 0 
f7 0 0 0 0 (1,0) 0 (1,0) 0 0 
f8 0 0 0 (1,1) 0 (1,0) 0 0 0 
f9 0 0 0 0 0 0 0 (1,1) (1,0) 
f10 0 0 0 0 0 0 0 (1,1) 0 
f11 0 0 0 0 0 0 0 0 (1,0) 

Supposing all the sensor SNR is 10dB, sensor resolution is 0.01, and all the fault resolution is 1, 
fault symptom duration time equals to time to failure. The detection sensitivity of all the sensors to all 
the faults is 0.9. According to (14), ρij (i=1,2,…,11, j=1,2,…,9) calculation results are shown in table 4. 

Table 4. The ESCS ρij results. 

 t1 t2 t3 t4 t5 t6 t7 t8 t9 
f1 0.9211 0 0 0 0 0 0 0 0 
f2 0 0.9316 0 0 0 0 0 0 0 
f3 0 0 0.9053 0 0 0 0 0 0 
f4 0 0 0 0.8216 0.8783 0.8504 0 0 0 
f5 0 0 0 0 0.9571 0.9159 0 0 0 
f6 0 0 0 0 0 0.9159 0.9106 0 0 
f7 0 0 0 0 0.9571 0 0.9106 0 0 
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f8 0 0 0 0.8672 0 0.8837 0 0 0 
f9 0 0 0 0 0 0 0 0.8700 0.8892
f10 0 0 0 0 0 0 0 0.8810 0 
f11 0 0 0 0 0 0 0 0 0.9510

According to (15)-(17), fault detection uncertainties can be calculated, as shown in table 5. 

Table 5. The related calculation results under uncertainty test. 

 Ri
1 Pi

1 SFDPi
1 Ri

2 Pi
2 SFDPi

2 

f1 0.9999 0.9211 0.9210 0.9999 0.9211 0.9210 
f2 0.9999 0.9316 0.9315 0.9999 0.9316 0.9315 
f3 0.9999 0.9053 0.9052 0.9999 0.9053 0.9052 
f4 1.0000 0.8501 0.8501 1.0000 0.8501 0.8501 
f5 1.0000 0.9365 0.9365 0 0 0 
f6 1.0000 0.9133 0.9133 0 0 0 
f7 1.0000 0.9338 0.9338 0 0 0 
f8 1.0000 0.8755 0.8755 0.9999 0.8672 0.8671 
f9 1.0000 0.8796 0.8796 0.9999 0.8700 0.8699 
f10 0.9999 0.8810 0.8809 0.9999 0.8810 0.8809 
f11 0.9999 0.9510 0.9509 0 0 0 

According to (18), the testability requirements for the ESCS PHM under uncertainty test are: 
FDR=0.9951, FIR=0.9827 and FPR=0.9992. One can see that the testability level of the ESCS is very 
good and hence can provide sufficient state information for the ESCS PHM. 

5. Conclusions 
To address the uncertainty existing in the testability requirements modeling for PHM in engineering 
applications, fault detection uncertainty is analyzed systematically from fault attributes, sensor 
attributes, fault-sensor matching attributes respectively. Further, quantitative uncertain analysis is 
described, which can assign a rational confidence level to the actual defect size. Based on the 
uncertainty analysis, testability requirement model for PHM is proposed. Due to considering the fault 
prognostics requirements for testability (FPR) and fault detection uncertainty, the model can be used 
to sensor selection and localization for PHM very well. At last, a ESCS is taken as an example to 
illustrate the presented approach. The application results show the proposed method is feasible and 
reasonable and can guide SSO for PHM in real applications. 
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