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Abstract. Extreme-Mass-Ratio Inspirals (EMRIs) are one of the most promising sources
of gravitational waves (GWs) for space-based detectors like the Laser Interferometer Space
Antenna (LISA). EMRIs consist of a compact stellar object orbiting around a massive black
hole (MBH). Since EMRI signals are expected to be long lasting (containing of the order of
hundred thousand cycles), they will encode the structure of the MBH gravitational potential in
a precise way such that features depending on the theory of gravity governing the system may
be distinguished. That is, EMRI signals may be used to test gravity and the geometry of black
holes. However, the development of a practical methodology for computing the generation and
propagation of GWs from EMRIs in theories of gravity different than General Relativity (GR)
has only recently begun. In this paper, we present a parameter estimation study of EMRIs in
a particular modification of GR, which is described by a four-dimensional Chern-Simons (CS)
gravitational term. We focus on determining to what extent a space-based GW observatory like
LISA could distinguish between GR and CS gravity through the detection of GWs from EMRIs.

1. Introduction
It is known that surrounding the central MBH of many quiescent galaxies there are around
107 − 108 stars forming a cusp/core (see e.g. [1]). As a consequence of mass segregation and
large scattering encounters between stars in the cluster, the largest stellar-mass compact objects
(SCOs), like neutron stars, m ≈ 1.4M�, white dwarfs, m ≈ 0.6M�, and stellar-mass black holes,
m ≈ 1 − 50M�, may be perturbed onto an orbit that passes close enough to the central MBH
and become gravitationally bound to it. It is expected that the capture of a SCO by a MBH
may be a frequent phenomenon in the Universe. The MBHs of interest for a GW observatory
like LISA [2] have masses in the range M• ∼ 105 − 107M�. In addition, there are observations
suggesting the existence of Intermediate-Mass Black Holes (IMBHs), whose masses are in the
range M• ∼ 102 − 104M� (see e.g. [3]). These may form EMRI-like systems, either an IMBH-
MBH inspiral or an SCO-IMBH system. Space-based detectors like LISA will be sensitive to the
inspiral of an IMBH into a MBH, whereas ground-based detectors like the Einstein Telescope [4]
will be sensitive to the inspiral of SCOs into IMBHs.

Once the SCO is captured, the binary loses energy and angular momentum through the
emission of GWs. This drives the inspiral of the SCO until it plunges into the MBH. Due to
the fact that the mass of the SCO is much smaller than the mass of the MBH, with typical
mass ratios lying in the range µ = m/M• ∼ 10−7− 10−3, the inspiral can be modelled as a slow
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adiabatic process in which the orbital time scale is much shorter than the timescale on which
the orbit shrinks.

During the last year of evolution before plunge, the orbit of the SCO spends of the order of
105 cycles in the strong field region of the MBH, mapping its geometric structure (which can
be characterized in terms of mass and current multipolar moments). This map is encoded in
the shape and timing of the GWs emitted [5]. If we can decode this map, EMRI detections will
allow us to study different aspects of the MBHs located at the centers of galaxies, the stellar
dynamics around galactic centers, etc. In particular, EMRI GW signals may be very useful to
test the spacetime geometry of MBHs [6, 7, 8, 9, 10, 11, 12, 13] and even alternative theories of
gravity (see, e.g. [14, 15, 13, 16, 17, 18]), which is the subject of this article.

Due to the myriad of alternative theories of gravity available, the question that arises here
is which kind of theory do we choose to test? Alternatively, what kind of phenomena can we
expect to test using EMRI observations? In this paper, we will focus on Dynamical Chern-Simons
Modified Gravity (DCSMG) which is a 4D effective theory of gravity that arises in certain low-
energy limits of string theory and can also arise in Loop Quantum Gravity (see [19] for a review of
DCSMG). DCSMG has been proposed as an explanation for the cosmic baryon asymmetry [20]
and makes predictions for the polarisation of the cosmic microwave background [21]. In addition,
it has potentially observable signatures in EMRI GW observations [22].

In this paper we summarize the necessary techniques that we have developed to estimate
the capability of a LISA-like GW detector to distinguish between GR and DCSMG using GW
signals from EMRIs, extending and improving the results of [22]. A more detailed account of
these developments will appear elsewhere [23]. Due to the large difference between the masses
of the components in the binary, an EMRI signal can be modelled accurately using black hole
perturbation theory (see e.g. [24]), in which the SCO is represented as a particle orbiting in
a given MBH spacetime background. In this framework, at the lowest order of approximation
the orbit of the particle is a geodesic of the MBH spacetime, but radiation reaction (RR)
effects, i.e. the effects that arise from the interaction of the SCO with its own gravitational field,
accelerate the trajectory and then drive the inspiral of the SCO. Depending on the theory of
gravity that describes the system, the RR effects drive the inspiral in different ways .

This paper is organised as follows. In Sec. 2 we summarize the formulation of our EMRI
model in DCSMG. In Sec. 3 we review the basics of signal analysis employed in our study.
Finally, in Sec. 4, we present results concerning whether a GW detector like LISA will be able
to discriminate between an EMRI in GR and one in DCSMG.

Throughout this paper, we follow the conventions of Misner, Thorne and Wheeler [25]: Greek
letters will represent spacetime indexes and Latin letters in the middle of the alphabet i, j, ...,
will represent spatial indexes only. Partial derivatives are denoted by ∂αh = ∂h/∂xα = h,α,
while, for any quantity h, covariant derivatives are denoted by ∇αh = h;α. In addition, we use
the Einstein summation convention and geometrised units, i.e. G = c = 1 and the gravitational
constant is given by κ = 1/(16πG). Finally, we use a bar, e.g. h̄, to denote background quantities.

2. Formulation of our EMRI model
We approximate our system following the procedure described in [22], in which an EMRI
is modelled as a binary composed of a point particle moving in a modified Kerr MBH
background geometry. That is, the MBH geometry is slightly modified as a consequence of
the CS gravitational modifications to GR. The motion of the particle, at the lowest order of
approximation, is given by a geodesic of this CS-modified MBH geometry. The action describing
the system is given by:

S = κSEH +
α

4
SCS +

β

2
Sϑ + Smat , (1)
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where the different terms are:

SEH =

∫
d4x
√
−gR , (2)

SCS =

∫
d4x
√
−gϑ ∗RR , (3)

Sϑ = −
∫
d4x
√
−g [ gµν(∇µϑ)(∇νϑ)] , (4)

Smat =

∫
d4
√
−g Lmat , (5)

which represent the Einstein-Hilbert action [Eq. (2)], the CS gravitational correction [Eq. (3)],
the CS scalar field action [Eq. (4)], and the action of the matter degrees of freedom [Eq. (5)].

The coupling constant, α, is associated with the Pontryagin density, ∗RR := 1
2ε
γδµνRαbetaµνR

β
αγδ,

which is coupled to the CS scalar field, ϑ. The coupling constant, β, determines the strength of
the coupling of the CS scalar field with the stress-energy distribution.

Following [26], we can construct the modified MBH geometry and the CS scalar field using the
slow-rotation (a/M• � 1, where M• and a = |S/M•| are the MBH mass and spin respectively)
and weak-coupling approximation. Then, the spacetime metric, gµν , and the CS scalar field, ϑ,
can be written as the sum of a background and a perturbative quantity characterized by the
perturbative parameter υ:

gµν = ḡµν + υhµν +O(υ2) , (6)

ϑ = ϑ̄+ υϑ+O(υ2) . (7)

The MBH metric has the following non-zero components in Boyer-Lindquist-like coordinates
(t, r, θ, φ) [26]:

ḡtt = −
(

1− 2M•
r

ρ2

)
, (8)

ḡrr =
ρ2

∆
, (9)

ḡθθ = ρ2 , (10)

ḡφφ =
Σ

ρ2
sin2 θ , (11)

ḡtφ =

[
5

8

ξ

M4
•

M5
•

r4

(
1 +

12M•
7r

+
27M2

•
10r2

)
− 2M2

•
r

ρ2

]
a

M•
sin2 θ , (12)

where Σ = (r2 + a2)2 − a2∆ sin2 θ, ρ2 = r2 + a2 cos2 θ and ∆ = r2f + a2, with f = 1− 2M•/r.
The CS parameter ξ is given by

ξ :=
α2

βκ
. (13)

Notice that the only metric component that contains the CS parameter ξ is ḡtφ and that it

behaves as r−4 for M•/r � 1, decaying faster than the rest of metric contributions and becoming
negligible at large distances. Under the preceding approximations, the CS scalar field is given
by [26]:

ϑ̄ =
5

8

α

β

a

M•

cos θ

r2

(
1 +

2M•
r

+
18M2

•
5r2

)
. (14)
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The numerical evolution of the system comprises two stages, namely the computation of the
SCO trajectory around the MBH and then the computation of the corresponding waveform
based on this trajectory. To generate the trajectory, it has been shown in [22] that in the
test-mass limit the SCO must follow geodesics of the CS deformed MBH background. It turns
out that the metric [Eqs. (8)-(12)] has almost identical symmetry properties as the Kerr metric
(at least at the level of approximation used for its derivation). As a consequence, the geodesic
motion of the particle is obtained by solving the following set of Ordinary Differential Equations
(ODEs):

ṫ = ṫK + Lzδg
CS
φ , (15)

φ̇ = φ̇K − EδgCSφ , (16)

ṙ2 = ṙ2K + 2ELzfδg
CS
φ , (17)

θ̇2 = θ̇2K , (18)

where E is the energy and Lz is the z-component of the orbital angular momentum of the
particle per unit mass. Here, a dot denotes differentiation with respect to the proper time and
(ṫK , ṙK ,θ̇K , φ̇K) are the corresponding expressions for geodesics in a Kerr MBH background:

ρ2ṫK = −
(
a2E sin2 θ − aLz

)
+
(
r2 + a2

)((
r2 + a2

) E
∆
− aLz

∆

)
, (19)

ρ2φ̇K = −
(
aE − Lz

sin2 θ

)
+ (r2 + a2)

aE

∆
− a2Lz

∆
, (20)

ρ4ṙ2K =
[
(r2 + a2)E − aLz

]2 −∆
[
Q+ (aE − Lz)2 + r2

]
, (21)

ρ4θ̇2K = Q− cot2 θL2
z − a2 cos2 θ(1− E2) , (22)

where Q denotes the Carter constant per unit mass squared. The correction δgCSφ appearing in

Eqs. (15)-(18) is the CS correction, which is given by:

δgCSφ =
ξa

112 r8f

(
70r2 + 120rM• + 189M2

•
)
. (23)

In order to avoid the presence of turning points in the integration of these equations of motion,
we introduce two new angle coordinates, ψ and χ, associated with the radial and polar motion
respectively, which are defined by the equations:

r =
pM•

1 + e cosψ
, cos2 θ = cos2 θmin cos2 χ , (24)

where p and e are the semilatus rectum and the eccentricity of the orbit respectively, and θmin

is the minimum value of the polar angle θ in the orbit. This value is related to the angle of
inclination of the orbit, θinc (see Table 1), through

θmin =
π

2
− θinc . (25)

A given orbit can be characterized in terms of the constants of motion (E,Lz,Q) or, alternatively,
in terms of the orbital parameters (e, p, θinc). To transform between these two sets of constants
we use the equations at the turning points of the radial and polar coordinates. At θ = θmin we
have that θ̇ = 0, leading to an expression for Q [22]:

Q = cos2 θmin

[
L2
z

sin2 θmin

+ a2(1− E2)

]
. (26)
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The additional two equations needed are those that define the radial turning points, that is, the
pericenter, rperi, and apocenter, rapo, which we relate to (e, p) in the usual way:

rperi =
pM•
1 + e

, rapo =
pM•
1− e

. (27)

Eq. (26) together with the equations ṙ(rperi) = ṙ(rapo) = 0 allow us to relate the values of the
constants (E,Lz,Q) to those of the orbital parameters (e, p, θinc).

Until now we have only considered geodesic motion. Constructing waveforms from geodesic
trajectories can lead to a a confusion problem in the sense that it is possible that an EMRI
waveform in GR matches an EMRI waveform in DCSMG but with different parameters, given
that the motion in both cases is going to be characterized by just three fundamental frequencies
of motion. This degeneracy is overcome when RR effects are taken into account, since these
tend to break such confusion, as the RR effects drive the inspiral in different ways depending
on the theory of gravity that describes the EMRI system. Nevertheless, it was shown in [22]
that, at leading order, the GW emission in DCSMG takes the same form as in GR. So, as a first
approximation we describe RR effects in DCSMG using expressions from GR. In particular we
use the fluxes for the constants of motion (E,Lz,Q) provided in [27]. In principle one might
think that this would lead to exactly the same inspiral evolution in DCSMG and GR, but it is
not the case due to the different relations between the constants of motion (E,Lz,Q) and the
orbital parameters (e, p, θinc).

To compute the EMRI waveforms in DCSMG, we first solve the ODEs given in Eqs. (15)-
(18) for the angle variables (ψ(t), χ(t), ϕ(t)) (see e.g. [28]). The scheme for evolving a particular
EMRI in DCSMG can be summarized as follows: For a given set of initial orbital parameters,

(e(0), p(0), θ
(0)
inc ), we find the associated initial constants of the motion, (E(0), L

(0)
z ,Q(0)), which are

different from the ones that one would obtain in GR for the same orbital parameters. Then, the

time evolution of the “constants” of motion, (Ė(0), L̇
(0)
z , Q̇(0)), the RR effect, is computed using

the fluxes of [27]. From the values of the constants of motion, (E(0), L
(0)
z ,Q(0)), their evolution

due to RR, (Ė(0), L̇
(0)
z , Q̇(0)), and the value of the geodesic radial period, Tr (the coordinate time

to go from the apocenter to the pericenter and back again to apocenter), we obtain the values

of the new constants of motion, (E(1), L
(1)
z ,Q(1)). Finally, from the new values of the constants

of motion we find the new values of the orbital parameters (p(1), e(1), θ
(1)
inc ). This algorithm

is iterated along the whole EMRI evolution to obtain the SCO orbit around the MBH. The
gravitational waveform is then generated using the multipolar formalism given by Thorne [29]
up to quadrupolar order, by identifying the Boyer-Lindquist coordinates with spherical polar
coordinates in a pseudo flat-space.

3. Signal analysis formalism
In this section we briefly review the formalism of signal analysis that we use in this paper. For
our calculations we use the LISA noise sensitivity curve (see e.g. [30]) to represent a possible
future space-based GW detector. At low-frequencies the response of the LISA detector can be
decomposed as the response of a pair of independent, right-angle Michelson detectors, which
we label by α = I, II in the standard way. Each of these data streams is a time series,
sα(t), which is a superposition of a possible gravitational wave signal hα(t) and noise nα(t),
sα(t) = hα(t) + nα(t). Under the assumptions that the noise in the detector is stationary,
Gaussian and uncorrelated between the two data streams, and that the spectral density of the
noise is the same in the two channels, the Fourier components of the noise, ñα(f), would have
a Gaussian probability distribution and

〈 ñα(f) ñβ(f ′)∗ 〉 =
1

2
δαβ δ(f − f ′)Sn(f) , (28)
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where a tilde denotes the Fourier transform, an asterisk denotes complex conjugation, angle
brackets denote the ensemble expectation value, and Sn(f) is the one-sided noise spectral density
of the data stream, which is the same for both channels.

The vector space of signals has a natural inner product associated with Sn(f):

(a|b) = 2
∑
I,II

∫ ∞
0

ã∗α(f)b̃α(f) + ãα(f)b̃∗α(f)

Sn(f)
df . (29)

The assumption of Gaussianity then means that the probability that the noise, n, has a particular
realisation, n0, has the form

p(n = n0) ∝ e−(n0|n0)/2 , (30)

and hence the likelihood that a signal h is present in the data stream s is proportional to
exp(−(s− h|s− h)/2). The ‘best-fit’ waveform will be the one that maximises (s|h) and, thus,
provides the maximum likelihood parameter estimate. The expected signal-to-noise ratio (SNR)
when filtering with the correct waveform is

SNR =
(h|h)

rms(h|n)
=
√

(h|h) , (31)

where the second equality follows from the fact that the expectation value of (a|n)(b|n) is
(a|b) [31].

A given template family h(t;~λ) will depend on a set of parameters ~λ. If we expand

exp(−(s − h|s − h)/2) around the best-fit parameters, ~λ0, by writing ~λ = ~λ0 + δ~λ, we can
derive a probability distribution function for the parameter uncertainties

p(δ~λ) = N exp

(
−1

2
Γjkδλ

jδλk
)
, (32)

where N =
√

det(Γ/2π) is the normalization factor and Γij is the Fisher information matrix [32]

Γjk =

(
∂h

∂λj
∂h

∂λk

)
. (33)

The variance-covariance matrix for the waveform parameters is therefore given by the inverse of
the Fisher matrix

〈δλjδλk〉 =
(
Γ−1

)
jk

+O(1/SNR) (34)

and so we can estimate the precision with which we will be able to measure a particular
parameter, λi, using LISA observations by computing the component Γ−1ii of this inverse matrix.

In our simulations, the space of EMRI waveforms in DCSMG, {h(t;λi) | i = 1, . . . , N} is
characterised by the following 15 parameters (see Table 1 for a description of these parameters):

~λ = {M•, a, µ, e0, p0, θinc0 , ξ̂, θS , φS , θK , φK , DL, ψ0, χ0, φ0} . (35)

The Fisher matrices for EMRI waveforms have very large condition numbers (the ratio of the
largest to the smallest eigenvalues) and so we use an LU decomposition to invert them, where
the Fisher matrix [Eq. (34)] is written as the product of a lower triangular matrix and an upper
triangular matrix [33]. In addition, to verify that the error estimates that we obtain are reliable,
we employ the maximum-mismatch criterion proposed in [34].
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4. Results
The main goal of our study is to determine how well a GW detector like LISA could estimate
the parameters of an EMRI system (see Table 1) in DCSMG and in particular how well it could
constrain the CS parameter ξ and hence distinguish between an inspiral in DCSMG and one in
GR. To that end, we have followed the approach of [22] to model the motion of the SCO in the
modified DCSMG MBH geometry, but this time we have included RR effects. To evolve the
inspiral we have followed the algorithmic scheme described above. Once the trajectory of the
SCO has been computed, we obtain the waveforms by using the multipolar formalism described
by Thorne in [29], but only keeping the quadrupolar term. To compute the Fisher matrix,
the waveform derivatives, ∂ih = ∂h/∂λi, are obtained numerically through a five-point finite
difference rule. Finally, the response of the detector and the Doppler modulation for a detector
like LISA are computed using the expressions in [30] and in [35].

Table 1. Summary of the EMRI parameter space employed in our analysis. The angles (θS , φS)
and (θK , φK) are spherical coordinates and t0 stands for the initial time in the computation.
For the parameters with physical dimensions, we indicate the units used in round brackets.

M• MBH mass.
a = |S|/M• (M2

• ) MBH spin.
µ = m/M• Mass-ratio.
e0 Eccentricity of the particle orbit at t0.
p0 Semilatus rectum at t0.
θinc0 Inclination of the orbit at t0.

ξ̂ = ξ × S (M6
• ) Product of the Chern-Simons parameter and the spin.

θS Polar angle with respect to the ecliptic.
φS Azimuthal angle with respect to the ecliptic.
θK Spin polar angle with respect to the ecliptic.
φK Spin azimuthal angle with respect to the ecliptic.
DL (Gpc) Distance to the EMRI from the ecliptic baricentre.
ψ0 Phase angle associated with the radial motion at t0.
χ0 Phase angle associated with the polar motion at t0.
φ0 Boyer-Lindquist azimuthal coordinate, φ, at t0.

Table 2. Parameters of the different systems used in our work, where we have fixed p = 10,
θinc = 0.85, θS = 1.1, φS = 0.3, θK = 1.4, φK = 0.25, DL = 1 Gpc, ψ0 = 0.25, χ0 = 1, and
φ0 = 0.1.

System M• a/M• µ e0 ξ̂/M6
•

A 5× 105 0.5 2× 10−5 0.5 10−2

B 5× 105 0.5 2× 10−5 0.5 0
C 5× 105 0.25 2× 10−5 0.5 10−2

D 5× 105 0.25 2× 10−5 0.5 0
E 106 0.25 10−5 0.32 10−2

F 106 0.25 10−5 0.32 0

We have computed parameter measurement error estimates for different systems in DCSMG
and the analogous systems in GR (that is, setting ξ = 0 = δξ). In Table 2, we show the
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parameters of the different (systems) used in this analysis, where the distance to the source is
given in Gpc, the angles are given in radians and the rest of the parameters are given in MBH
mass units, while the MBH mass itself is given in solar masses. The direction of the MBH spin
is taken to be parallel to the z-direction of the EMRI reference frame.

As a test of our numerical set-up, in Table 3 we compare our numerical estimates in GR with
the ones obtained in [30]. Since the parameter space employed in our analysis differs with the
one chosen in [30], we just compare the results obtained for the parameters common to both
works and, as we can see from Table 3, the two methods produce very similar results. However,
as it is shown in the table, our estimate for the error in the MBH spin is two orders of magnitude
smaller than the one obtained in [30]. In our analysis, we include the effect of the MBH spin
directly in the geodesic equations, whereas in [30] the effect of the MBH spin is introduced as a
post-Newtonian correction in their post-Keplerian equations of motion. Our analysis therefore
includes higher order spin corrections which may explain some of the improvement that our
results show. A similar improvement in spin measurement precision was observed in [33] who
used a similar method based on exact Kerr geodesic trajectories.

Table 3. Parameter accuracy estimates for the inspiral of a 10M� SCO into a 106M� MBH.
It is assumed that we have observed the last year of inspiral and that the system is an EMRI
described by GR, i.e., ξ = 0. We compare the results we have obtained with the ones obtained
for the same parameters by Barack and Cutler [30].

Parameter GR (this work) GR ([30])

∆ lnM• 8.6× 10−4 9.2× 10−4

∆a/M• (M•) 9.5× 10−6 6.3× 10−4

∆ lnµ 1.4× 10−4 9.2× 10−5

∆e 2.7× 10−5 2.8× 10−4

∆ lnDL
(a) , ∆ ln (µ/DL) (b) 6.5× 10−2 (a) 3.7× 10−2 (b)

We have considered two different kind of EMRIs, namely one composed of a MBH with
M• = 5 × 105M� and a SCO with mass m = 10M�, and the other one composed of a MBH
with mass M• = 106M� and a SCO with mass m = 10M�. For the former, we consider an
observation lasting for the six months before plunge (SNR= 35) and for the latter we consider an
observation lasting one year before plunge (SNR= 40). In Table 4, we show the error estimates
obtained in our simulations. We typically find that an EMRI observation can determine the
extrinsic parameters, namely ~λextrinsic = {θS , φS , θK , φK , DL, ψ0, χ0, φ0} , to a fractional error

of ∼ 10−2, while the intrinsic parameters: ~λintrinsic = {M•, a, µ, e0, θinc0 }, are typically measured

with a fractional error of ∼ 10−4, 10−5, 10−5, 10−5, 10−5 respectively. For the CS parameter ξ̂,
we find that in the best case it can be measured with a fractional error ∼ 10−1. These results
suggest that LISA might be able to distinguish between GR and DCSMG using certain EMRI
observations. Notice that in this paper we are using the concept of the LISA mission as a
reference and, as it is shown in [23], the results obtained are also valid for the updated eLISA or
NGO (New Gravitational-Waves Observatory) [36] by normalising to a fixed SNR. In addition,

we find that for a given value of ξ̂, it will be better estimated for systems with smaller MBH
mass, M•, and spin, a. This is not surprising, since the leading-order term that contains the CS
parameter in the DCSMG metric [Eq. (12)] is ∼ ξ̂/M6

• (M•/r)
6. By decreasing the MBH mass

with fixed ξ̂, this term becomes larger at fixed r/M• and by decreasing the MBH spin this term
is larger relative to the Kerr gtφ metric coefficient.

Due to the relatively high computational cost of these calculations, a full (i.e., including all the
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Table 4. Error estimates for half a year of evolution (SNR= 35) for Systems A, B, C, and D;
and for one year of evolution (SNR= 40) for Systems E and F.

Parameter A B C D E F

∆ lnM• 1.0× 10−4 9.8× 10−3 7.8× 10−4 7.6× 10−4 8.6× 10−4 8.4× 10−4

∆a (M•) 1.5× 10−5 9.5× 10−6 7.5× 10−6 6.3× 10−6 1.8× 10−5 9.1× 10−6

∆ lnµ 1.8× 10−4 3.9× 10−5 5.7× 10−5 2.4× 10−5 3.2× 10−4 1.2× 10−4

∆e0 9.2× 10−5 9.2× 10−5 8.4× 10−5 8.4× 10−5 1.9× 10−5 1.7× 10−5

∆θinc0 2.8× 10−5 1.7× 10−5 2.6× 10−5 2.2× 10−5 8.1× 10−5 3.2× 10−5

∆ ln ξ̂ 2.1 4.4× 10−1 5.1
∆θS 1.8× 10−2 1.7× 10−2 1.5× 10−2 1.4× 10−2 1.1× 10−2 1.1× 10−2

∆φS 1.7× 10−2 1.6× 10−2 1.5× 10−2 1.5× 10−2 2.1× 10−2 2.0× 10−2

∆θK 2.8× 10−2 2.8× 10−2 2.5× 10−2 2.5× 10−2 2.3× 10−2 2.3× 10−2

∆φK 7.2× 10−2 7.2× 10−2 6.5× 10−2 6.5× 10−2 8.6× 10−2 8.6× 10−2

∆DL (Gyr) 2.7× 10−2 2.6× 10−2 2.2× 10−2 2.3× 10−2 1.8× 10−2 1.9× 10−2

∆ψ0 9.8× 10−2 7.1× 10−2 7.2× 10−2 6.0× 10−2 1.0× 10−2 8.6× 10−2

∆χ0 8.6× 10−2 8.5× 10−2 7.7× 10−2 7.7× 10−2 9.2× 10−2 9.0× 10−2

∆ϕ0 8.6× 10−2 8.3× 10−2 7.6× 10−2 7.5× 10−2 1.1× 10−1 1.1× 10−2

parameters) error estimation takes approximately three days using a single processor machine.
For this reason, we have only studied a small number of points in the parameter space of all
possible EMRI systems that we might detect. In this sense, these results could be improved by
performing a more exhaustive study of the parameter space and also using a full Monte Carlo
sampling. In addition, we could have considered longer gravitational waveforms, that cover the
entire length of the LISA mission (∼ 2–5 years), which would be expected to improve our ability
to measure the system parameters.

5. Conclusions
In this work we have presented a first study aimed at assessing the ability of a GW detector like
LISA to discriminate between GR and DCSMG by performing parameter estimation studies of
EMRIs in DCSMG. We have computed the waveforms generated by a SCO orbiting in a MBH
geometry modified by CS corrections. The parameter error estimates have been computed using
a Fisher matrix analysis. To validate our computational framework, we have studied a typical
EMRI system in GR and we have found agreement between our results and previous results
found in the literature. We have applied these parameter estimation studies to estimate the
ability of LISA to distinguish between GR and DCSMG by estimating the CS parameter ξ. To
that end, we have performed simulations of the GWs emitted during the last six months before
plunge of an EMRI system for which the gravitational wave emission is at frequencies in the
most sensitive part of the LISA band. Our results indicate that, for certain EMRI systems, a
detector like LISA may be able to discriminate between GR and DCSMG. We have also seen
that the error in estimating ξ decreases with the MBH mass and spin. We are now performing a
more exhaustive study of the parameter space of possible EMRIs to better understand if these
results hold in general [23].

Another subject that deserves further study is the question of the systematic errors that would
arise by using GR waveform templates to detect EMRIs that are actually described by DCSMG.
This can be done by using the formalism developed recently by Cutler and Vallisneri [37], which
allows for the estimation of the magnitude of the model errors. Finally, the present work can
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be extended to other GW detectors, for instance, to study Intermediate-Mass-Ratio Inspiral
detection with the future Einstein Telescope.
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