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Abstract. Stochastic mechanics is an interpretation of nonrelativistic quantum mechanics
in which the trajectories of the configuration, described as a Markov stochastic process, are
regarded as physically real. The natural stochastic generalization of classical variational
principles leads to a derivation of the Schrödinger equation. A brief review of the successes
and failures of the theory is given, with references.

Stochastic mechanics has been the work of many people. It is described in the books [1]
and [2], the second of which contains many references. It is an attempt to derive and explain
nonrelativistic quantum mechanics as an emergent theory in which particle trajectories are
physically real and governed by stochastic laws of motion.

1. Classical mechanics
Consider n particles in d space dimensions, with configuration space Rdn. Let mk be the mass
of the kth particle and let mij be the diagonal matrix with entries mk on the diagonal when
(k− 1)d < i = j < kd. Then mij is a Riemann metric, and even though it is flat it is convenient
to use tensor notation with the summation convention.

Then T = 1
2mij ẋ

iẋj (where ẋ is the velocity) is the kinetic energy. Let V be the potential
energy, so L = T − V is the Lagrangian, and

Fi = − ∂v

∂xi
+
d

dt

∂V

∂vi

is the force (where vi = ẋi).
The state of the system is (x, v) and a dynamical variable is a function of the state. We

assume that V = ϕ−Aiẋ
i, where ϕ is the scalar potential and A is the covector potential. This

form of the potential energy is to ensure that the force will be a dynamical variable. From a
variational equation one derives the Hamilton-Jacobi equation

∂S

∂t
+

1

2
(∇iS −Ai)(∇iS −Ai) + ϕ = 0

with the Newton equation Fi = mij ẍ
j .

2. Kinematics of stochastic mechanics
A stochastic process is a Markov process in case the past and future are conditionally independent
given the present. That is, knowledge of the past gives no more information about the future
than does knowledge of the present, and vice versa. The notion is time symmetric.
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In stochastic mechanics, the trajectory x(t) is a Markov process governed by a stochastic
differential equation of the form

dx(t) = dw(t) + b(x(t), t)dt

Here w is a Wiener process (Brownian motion process) with

Etdw
i(t)dwj(t) = h̄mijdt

where Et is the conditional expectation with respect to the present at time t. Then dw(t) is
singular, of order dt1/2. Such a process has continuous but nowhere differentiable trajectories.

The assumption that physical particles behave in this way is just on the borderline of being
falsifiable. We can measure the position at two times t1 and t2 with an error given by the
uncertainty principle. With a constant bigger than h̄ in the diffusion tensor h̄mij we could
determine that particles do not move in the way described by stochastic mechanics.

The mean forward derivative DF (t) of a stochastic process F is defined by

DF (t) = lim
dt→0+

Et
F (t+ dt)− F (t)

dt

and the mean backward derivative is

D∗F (t) = lim
dt→0+

Et
F (t)− F (t− dt)

dt

Then b(x(t), t) is Dx(t), the mean forward velocity of the process. It is one substitute for the
derivative, which does not exist. By time reversal symmetry, there is also a mean backward
velocity b∗(x(t), t), and we also form the current velocity v = 1

2(b+ b∗) and the osmotic velocity

u = 1
2(b− b∗).

Let ρ(x, t) be the probability density of the configuration at time t. Then we have the osmotic
equation

ui =
1

2

∇iρ

ρ

and the current equation
∂ρ

∂t
= −∇i(v

iρ)

3. Dynamics of stochastic motion
Classical dynamics comes from a variational principle applied to action integrals. How can we
formulate the action in the absence of derivatives? The contribution

∫
ϕ(x(t), t)dt from the scalar

potential is an ordinary Riemann integral, and the contribution from the covector potential can
be expressed as a Fisk-Stratonovich time-symmetric stochastic integral

∫
Aj(x(t), t)dxj(t). The

kinetic action is more subtle and was formulated by Francesco Guerra and Laura Morato [3].
There is an account of this is §9 of [2].

Briefly, let dxi/dt be a difference quotient with dt > 0, not a derivative. We need to calculate

Et
1

2

dxi

dt

dxi
dt

to o(1). Let

W k =

∫ t+dt

t
[wk(r)− wk(t)]dr
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We find
dxidxi = bibidt

2 + 2bidwidt+ 2∇kb
iW kdwi + o(dt2)

First miracle: the term 2bidwidt is singular, of order dt3/2, but Et2b
idwidt = 0 since 2bi lives

in the present and dwi is in the future with mean 0.
Now we use the fact that w has orthogonal increments and calculate further, finding

Et
1

2

dxi

dt

dxi
dt

=
1

2
bibi +

1

2
∇ib

i +
nd

2dt
+ o(1)

Second miracle: the singular term nd/2dt is a constant, independent of the trajectory, so it
drops out when a variational principle is applied to the action.

Let R = h̄
2 log ρ, so ∇iρ is the osmotic velocity ui. Apply the variational principle to the

expected action. We find the stochastic Hamilton-Jacobi equation

∂S

∂t
+

1

2
(∇iS −Ai)(∇iS −Ai) + ϕ− 1

2
∇iR∇iR−

h̄

2
∇i∇iR = 0

which without the terms containing R is the classical Hamilton-Jacobi equation. Write the
current equation in terms of R and S and find

∂R

dt
+∇iR(∇iS −Ai) +

h̄

2
∇i∇iS −

h̄

2
∇iA

i = 0

We have a pair of coupled nonlinear partial differential equations.

Third miracle: Let ψ = e
1
h̄

(R+iS). Then these equations are equivalent to the Schrödinger
equation

ih̄
∂ψ

∂dt
=

[
1

2

(
h̄

i
∇j −Aj

)(
h̄

i
∇j −Aj

)
+ ϕ

]
ψ

We also have the stochastic Newton equation Fi = mija
j where a is the mean acceleration

given by 1
2(DD∗x+ D∗Dx).

We can apply the same procedure to any Riemannian manifold. We find the Schrödinger
equation with an additional term (h̄2/12)R̄ where R̄ is the scalar curvature. This is the Bryce
DeWitt term [4].

4. Successes of stochastic mechanics
Here is a list of the main successes of stochastic mechanics.
• A classical derivation of the Schrödinger equation, by Guerra and Morato [3].
• The probability density ρ of the Markov process agrees with |ψ|2 at all times.
• A stochastic explanation of the relation between momentum and the Fourier transform of

the wave function, by David Shucker [5].
• A proof of the existence of the Markov process under the physically natural assumption of

finite action, by Eric Carlen [6]. This is perhaps the most technically demanding work in the
entire subject.
• A stochastic explanation of why identical particles satisfy either Bose-Einstein or Fermi-

Dirac statistics if d ≥ 3, with parastatistics possible if d = 2. This is not contained in §20 of [2],
but it follows from the discussion there.
• A stochastic explanation of spin and why it is integral or half-integral, work of Thaddeus

Dankel [7], Timothy Wallstrom [8], and of Daniela Dohrn and Francesco Guerra jointly [9].
• If the force is time-independent, the expected stochastic energy Et(

1
2u

iui + 1
2v

ivi + ϕ) is
conserved; see §14 of [2].
• A stochastic picture of the two-slit experiment, explaining how particles have trajectories

going through just one slit or the other, but nevertheless produce a probability density as for
interfering waves; see §17 of [2].
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5. Failures of stochastic mechanics
In quantum mechanics, if there are two dynamically uncoupled systems, an alteration of the
second system in no way affects the first, even if the two systems are entangled. This is not so
in stochastic mechanics. With two dynamically uncoupled particles, a force applied to one can
immediately affect the motion of the other, in a way independent of their spatial separation; see
§23 of [2]. This makes it unrealistic to regard the trajectories as physically real.

There is a more serious problem. Since ρ = |ψ|2 at all times, stochastic mechanics gives
the same prediction as quantum mechanics for a measurement performed at a single time. But
it can give wrong predictions for measurements performed at two different times; see Chapter
10 of [10]. Consider two entangled but dynamically uncoupled harmonic oscillators. Let Xi(t)
be the Heisenberg position operator of oscillator i at time t. Each is periodic in t, so the
correlation of (X1(t1), X(t2)) does not decay as t2 →∞. Let xi(t) be the position of oscillator i
at time t according to stochastic mechanics. Then xi(t) has the same probability distribution
as Xi(t) for each i and each t, but (x1(t1), x2(t2)) does not have the same probability distribution
as (X1(t1), X2(t2)). In fact, the correlation of (x1(t1), x2(t2)) decays to 0 as t2 → ∞. The
oscillators are uncoupled, so X1(t1) and X2(t2) commute, and according to quantum mechanics,
the probability distribution is that of (X1(t1), X2(t2)). If (x1(t1), x2(t2)) represented the real
physical situation, theirs would be the probability distribution. Thus stochastic mechanics and
quantum mechanics give different predictions for the result. Why do I not suggest that the
experiment be done? Because if a record of the observation of the first oscillator at time t1 is
made by some physical means, and similarly for the second oscillator, and the two records are
compared at a common later time t3, this is an observation at a single time, for which quantum
mechanics and stochastic mechanics agree. The nonlocality of stochastic mechanics conspires to
bring the records into agreement.

How can a theory to be so right and yet so wrong? The most natural explanation is that
stochastic mechanics is an approximation to a correct theory of quantum mechanics as emergent.
But what is the correct theory?
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