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Abstract. An approach to the unconditional security of quantum key distribution protocols is
presented, which is based on the uncertainty principle. The approach applies to every case that
has been treated via the argument by Shor and Preskill, but it is not necessary to find quantum
error correcting codes. It can also treat the cases with uncharacterized apparatuses. The proof
can be applied to cases where the secret key rate is larger than the distillable entanglement.

1. Introduction
One of the aims of the cryptography is to allow two legitimate parties, Alice and Bob, to exchange
messages secretly without leak to a third party, Eve, who tries to eavesdrop. It is well known
that once Alice and Bob share a secret key, which is a common random bit sequence unknown
to Eve, they can communicate a secret message of the same length as the key. The task of
quantum key distribution (QKD) is a way to produce or to amplify the secret key using the
properties of quantum mechanics. For any protocol of QKD, it is vital to have a proof of the
unconditional security because the robustness against any kind of attack allowed by the law of
physics is the main advantage of QKD over classical schemes aiming at the same task. One of
the well-known strategies for the security proof is the argument [1] given by Shor and Preskill,
in which a reduction to an entanglement distillation protocol (EDP) based on Calderbank-Shor-
Steane (CSS) quantum error correcting codes (QECC) [2, 3] is used to show that the information
leak on the final key is negligible. This approach has turned out to be quite versatile due to
the simplicity of the idea: for example, the original proof for the BB84 protocol [4] has been
extended [5, 6] to cover the B92 protocol [7]. On the other hand, invoking the CSS-QECC in the
proof requires the actual users to find a quantum code satisfying a certain property, which is not
always an easy task. Even the innocent-looking formula [(1) below] for the asymptotic key gain
needs a complicated argument [8] for strict derivation. Decoupling of the error correction and
the privacy amplification can be made by encrypting the former [9], but only when it satisfies a
constraint coming from the CSS-QECC.

If we look back to the first proof [10] of unconditional security by Mayers, we notice that it
also has its own merits. One disadvantage, the complexity of the proof, was recently remedied
by a simple proof [11] by Koashi and Preskill based on the same spirit, namely, reduction to a
two-party protocol by omitting one of the legitimate users by a symmetry argument. In this line
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of approach, the error correction and the privacy amplification are decoupled from the start,
and we can just use any conventional scheme for the error correction. The proof also shows a
peculiar and useful property, which allows the use of basis-independent uncharacterized sources
or detectors. For example, if we use an ideal detector, the source can be anything as long as it
does not reveal which basis is used in the BB84 protocol. We can still use the same formula for
the key rate, indicating that any fault in the source can be automatically caught in the form of
an increase in the observed bit errors. Unfortunately, the argument of omitting one party relies
heavily on the symmetry of the BB84 protocol, and it cannot be applied to the protocols with
no such symmetry.

Here we present an approach to the unconditional security based on uncertainty principle.
This argument has the same advantages in the Mayers-Koashi-Preskill argument, while retaining
the versatility of the Shor-Preskill argument. In fact, in any protocol having a proof that relies on
the Shor-Preskill argument, we can decouple the error correction and the privacy amplification
just by encrypting the former, thereby relieve it from the constraint of CSS-QECC. The new
approach allows us to solve security problems with imperfect devices that were beyond either of
the previous arguments. For example, we can derive a key rate formula for the BB84 protocol
with an arbitrary source, the properties of which are unknown except for a bound on the fidelity
between the averaged states for two bases [12]. Our proof also provides an insight into the
recently predicted phenomenon of secure key from bound entanglement [13].

2. Basic ideas in the security proof
Most of the QKD protocols can be equivalently described by an entanglement-based protocol,
in which Alice and Bob share a pair of quantum systems HA ⊗ HB after discarding other
systems used for random sampling tests. The state ρ0 of HA ⊗ HB at this point is not fixed
and may be highly correlated among subsystems due to Eve’s intervention, but the results of
the tests may give a set of promises on the possible state. For example, in the case of Shor-
Preskill proof, HA ⊗ HB is composed of N pairs of shared qubits, and there is a promise that
the following statements hold except for an exponentially small probability: Suppose that each
qubit is measured on z or x basis. Then the number nbit of qubits showing the bit error
(σz ⊗σz = −1) satisfies nbit/N ≤ δbit, and the number nph with the phase error (σx ⊗σx = −1)
satisfies nph/N ≤ δph. Here δbit and δph are determined from the results of the test. Here we
consider more general cases, in which the size of HA ⊗HB is arbitrary. We give a proof for the
unconditional security of the protocols having the following form:

Actual Protocol — Alice and Bob make measurements on HA and on HB, respectively.
Through an encrypted classical communication consuming r bits of secret key, they agree on
an N -bit reconciled key κrec, except for a negligible failure probability. In the binary vector
space on N bits, one party chooses a linearly-independent set {Vk}k=1,...,N−m of N -bit sequences
randomly and announce it. The k-th bit of the final key κfin is defined as scalar product κrec ·Vk.

This protocol newly produces N − m bits of secret key, and the net secret key gain is
G = N − r − m bits. We first give an overview of our security proof, taking the Shor-Preskill
(SP) case as an example. The core of our approach is to regard κrec as the outcome of z-
basis measurements on N virtual qubits K⊗N . In the SP case, we may just identify HB with
K⊗N . Next, we ask how we could have predicted the N -bit outcome X if the N qubits had
been measured in the x-basis. In the SP case, we could have measured HA on the x-basis to
obtain an N -bit outcome μ. The random sampling tests assure that this outcome coincides
with X within ∼ Nδph-bit errors, namely, the conditional entropy is bounded as H(X|μ) ≤ Nξ
with ξ ∼ h(δph), where h(y) ≡ −y log y − (1 − y) log(1 − y). Then, the uncertainty of the
complementary observable, namely, the z-basis outcome κrec, should satisfy H(κrec) ≥ N −Nξ
according to the entropic uncertainty relation [14]. Hence, it is not surprising that Eve has
negligible information on the final key κfin when m = N [h(δph) + ε]. Since the error correction
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consumes r = N [h(δbit) + ε] bits of secret key, we arrive at the familiar asymptotic net key gain

G = N [1 − h(δbit) − h(δph)]. (1)

3. Main theorem
The rough sketch of the proof in the previous section can be made strict and generalized as
follows. First we choose a quantum operation Λ that converts state ρ on HA ⊗HB to state Λ(ρ)
on HR ⊗K⊗N , where HR stands for an ancillary system R. We further consider a measurement
MR on HR, and define μ to be its outcome. As we have seen, in the SP case we may choose Λ
to be a trivial operation Λ0 that just changes the definition as HA

∼= HR and HB
∼= K⊗N , and

take MR to be the x-basis measurement. But the security proof here allows almost free choices
of Λ and MR, except for the following requirement:

Assumption 1 — The application of Λ followed by the standard z-basis measurements on
K⊗N is equivalent to the measurement of κrec on HA ⊗HB in Actual Protocol.

Note that within the constraint of Assumption 1, it is even allowed to take Λ involving
collective operations over HA and HB.

Let X be the outcome of x-basis measurements on K⊗N . The next step is to rephrase the
condition H(X|μ) ≤ Nξ in the rough sketch in a more rigorous and flexible form:

Assumption 2 — There exists a set Tμ of N -bit sequences with cardinality |Tμ| ≤ 2Nξ

for each μ, such that the pair of measurement outcomes (μ,X) satisfies X ∈ Tμ except for an
exponentially small probability η.

Now we can state the main theorem about the security:
Theorem — If Assumptions 1 and 2 hold for m = N(ξ + ε) with ε > 0, Eve’s information

on κfin in Actual Protocol is at most h(η′) + Nη′ with η′ = η + 2−Nε.
This theorem can be used as follows. First we choose Λ and MR under Assumption 1. Next,

combined with the promises obtained from the random sampling tests, we obtain a value of ξ
with which Assumption 2 holds. Then, Theorem assures that the unconditionally secure key
gain of at least G = N − r − N(ξ + ε) is achievable. For a good key gain, Λ and MR should be
chosen such that ξ is as large as possible.

4. Proof of the main theorem
Thanks to Assumption 1, Eve’s knowledge on κfin in Actual Protocol is the same as that on κfin

obtained from HA ⊗HB by the following procedure.
Protocol 1 — Apply Λ and discard HR. For the N qubits K⊗N , measure each qubit on z-basis
to determine the N -bit key κrec. Choose a linearly-independent set {Vk}k=1,...N−m randomly,
and announce it to Eve. Let κrec · Vk be the k-th bit of the final key κfin.

In order to show that Eve has negligible information on κfin, we consider yet another protocol,
which is later shown to be equivalent to Protocol 1. Define operator Σν(W ) ≡ σb1

ν σb2
ν · · ·σbN

ν (ν =
x, z) acting on K⊗N for N -bit sequence W = [b1b2 · · · bN ]. The new protocol is defined as follows:
Protocol 2 — (a) Apply Λ and make measurement MR on HR to obtain outcome μ. (b) Choose
N -bit sequences Wj(j = 1, . . .m) randomly, and take an arbitrary linearly-independent set
{Vk}k=1,...N−m of N -bit sequences satisfying Vk · Wj = 0 for any j, k. Announce {Vk} to Eve.
(c) Measure m observables {Σx(Wj)} to determine an N -bit sequence X∗ as we will explain
later. (d) Apply unitary operation Σz(X∗). (e) Measure {Σz(Vk)} to determine the (N−m)-bit
final key κfin.

If we measured K⊗N on the x-basis before step (c), the outcome X would be one of 2Nξ

candidates Tμ except for probability η (Assumption 2). Each measurement of Σx(Wj) in step
(c) gives a random parity bit X · Wj , which halves the number of candidates. Hence, as in the
hushing method of EDP [15], by knowing m = N(ξ + ε) random parity bits we can derive an
estimate X∗ of X with an exponentially small failure probability Pr(X∗ �= X) ≤ η′ ≡ η+2−Nε.
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Then, if we measured K⊗N on the x-basis after the phase flip in step (d), the outcome would
be X∗ − X, which is 0 except for probability η′. This implies that the state σ of the qubits
after step (d) is a nearly-pure state satisfying 〈0⊗N

x |σ|0⊗N
x 〉 ≥ 1− η′, where |0⊗N

x 〉 is the x-basis
eigenstate for X = 0. Since the measurement in step (e) is applied on this nearly-pure state,
Eve has only negligible (at most S(σ) ≤ [h(η′) + Nη′]-bit) information about κfin.

The equivalence of the two protocols are easy to be seen. In Protocol 2, the operators
{Σz(Vk)} commute with Σz(X∗) and with Σx(Wj) since Vk ·Wj = 0. Hence we can omit steps
(c) and (d) and still obtain the same final key. We further notice that MR is now redundant,
and the choosing method of {Vk} can be simplified to a random selection. Noting that {Σz(Vk)}
can be also obtained through a z-basis measurement on each qubit, we are lead to Protocol 1.
This completes the proof.

5. Discussion
We have described a method of proving the unconditional security which unifies two major
previous approaches and retains the advantages in both of them. The proof relies on the
observation that Alice can guess the z-basis outcomes of virtual N qubits with r-bit uncertainty
in the actual protocol, and Alice and Bob can guess the x-basis outcomes with m-bit uncertainty
in a equivalent protocol. The “excess” over the uncertainty limit, N − r − m, amounts to the
key gain. Note that if they share a maximally entangled state (MES), Alice alone can guess
for both of the bases. The condition for the secrecy is weaker than that since it allows her to
collaborate with Bob nonlocally for the x basis, through any operation Λ satisfying Assumption
1. This difference is considered to be a reason for the gap between distillable entanglement and
secret key gain [13]. In fact, examples in [13] are constructed by applying a nonlocal “twisting”
operation to ρAB ⊗ ρA′B′ , where ρAB is an MES. Their twisting operations do not change the
outcome of z-basis measurement on HB, which can be regarded as κrec. Hence, we can define Λ
to be the reverse of the twisting followed by Λ0, which satisfies Assumption 1. This shows that
the present method potentially gives a key rate exceeding the amount of distillable entanglement.
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