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Abstract. Electromagnetic acoustic transducers (EMAT) generate forces which are sources of 

elastic waves in a part without contact with it. Depending on the EMAT design, normal or 

tangential forces can be generated. Thanks to these capabilities, EMATs constitute an 

interesting alternative to piezoelectric devices in many configurations of non-destructive 

examination. In this paper, only shear horizontal (SH) guided waves radiated by an EMAT in a 

plate made of ferromagnetic material are modelled. These waves are particularly interesting to 

use for testing welded structures: SH waves may propagate in a weld without scattering and 

mode conversion phenomena. All the forces generated by an EMAT (Lorentz’s, 

magnetosctrictive and magnetic forces) being exponentially decreasing with depth, they are re-

written as series of moments, then, approximated as equivalent surface stresses. Surface 

stresses are then taken into account as terms of source of elastic waves. Specific features of 

EMAT can eventually be exploited to derive simple analytic expressions of the applied stress, 

leading to closed-form solutions for the modal amplitude of SH guided waves. Using these 

solutions, which are calculated at no computing cost, it becomes easy to study the influence of 

typical EMAT parameters on the modal amplitude of waves generated in the plate. 

1.  Introduction 

Guided waves are used in NonDestructive Testing because they can propagate over long distance. 

They are often generated by piezoelectric transducers, but they can also be generated by Electro-

Magnetic Acoustic Transducers (EMAT). Many designs of EMAT were experimentally studied and 

the ultrasound generation is well-known in a non-ferromagnetic metal [1]. The current in the EMAT 

induces currents in the part under test, known as eddy currents, which, with the superposed bias 

magnetization, create a force, the Lorentz force, confined in the vicinity of the part surface. In a 

ferromagnetic medium, EMATs create two more forces, also confined near the surface: the 

magnetization force and the magnetostriction force. Many EMAT designs have been studied to 

generate various kinds of elastic wave fields of various polarizations; for example, SH guided waves 

are more easily generated by means of specific EMAT design than with piezoelectric transducers. 

Besides, the fact that there is no contact of the EMAT with the part under test allows high speed 

inspection. EMATs can also work in hostile conditions such as high temperature or high pressure 

environments. However, those benefits are counteracted by the fact that EMAT signals are generally 

of much lower amplitude than that generated by piezoelectric transducers. 

In weld inspection, SH waves have a specific interest because typical inner structure of welds may 

appear as a homogeneous material for them (figure 1) if the heterogeneous and anisotropic structure is 

bi-dimensional and the wave polarization is normal to it. The aim of the present paper is to develop a 
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model for predicting the radiation of SH guided waves in a ferromagnetic plate-like structure by 

EMATs; such a model is helpful for optimizing the design of EMAT to get higher signal amplitude.  

This work is based on modal description of guided waves to ease the interpretation of typical 

complex waveforms in guided wave inspection; one can further assume that similarly, the 

interpretation in terms of guided modes of the field radiated in a rather complex way by an EMAT in 

ferromagnetic materials shall also be made easier. Under a modal description of fields, the particle 

velocity and stress fields, solutions of the elastodynamic field equations governing the propagation of 

elastics waves, are expressed as linear combinations of the modes likely to exist. The part geometry 

considered herein is that of a plate made of homogeneous and isotropic ferromagnetic metal (iron, 

nickel). To simplify the problem, the analysis is made in 2D as shown on figure 1. As far as SH guided 

waves for weld inspections are concerned, this simplification makes sense since their specific interest 

only holds if the 2D symmetry reasonably applies.  
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Figure 1. 3D representation of the configuration of the plate and the EMAT studied. 

 

The present paper is organized as follows. In a first part, the theoretical model of SH wave 

radiation in ferromagnetic materials by EMATs is derived: closed-form solutions for the magnetic 

excitation field and the body forces it creates are derived; body forces are converted into surface stress 

sources of an elastodynamic problem solved as a modal series. In a second part, examples of 

application of our model illustrate some of the model capabilities. 

2.  Theory 

The present paragraph is dedicated to the derivation of the global model for predicting SH guided 

waves radiated by an EMAT in a ferromagnetic plate. It is made of a succession of semi-analytical 

solutions of sub-problems. Semi-analytical solutions indeed can be easily translated into simulation 

tools allowing efficient computation works for optimizing NDT configurations.  

At first, a closed-form solution for the magnetic field created by an EMAT is given by accounting 

for the periodicity of typical wire arrangement in classical EMAT designs. Then, body forces 

generated in a ferromagnetic plate are described as functions of the magnetic field. These forces are 

then transformed as equivalent surface stresses, for they are confined close to the surface where the 

magnetic field applies. A generic formula for the Green’s function describing SH modes generated by 

a surface stress in a plate is then proposed. This last formula is eventually used in a convolution 

integral to predict modal amplitudes of SH guided waves generated by EMATs. 

2.1.  Magnetic field created by an EMAT 

The magnetic field in the material can be deduced from Maxwell’s equations and Ohm’s law under the 

following assumptions: 

 all quantities vary harmonically with time so that a term exp(i t) can be factorized in the 

various equations,  being the pulsation [rad.s
-1

] and t is the time [s]; 
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 time-dependency of current displacement in Maxwell-Ampere’s law is neglected because, at  

typical EMAT working frequencies, current displacement can be considered as permanent 

compared to particle displacement; 

 magnetostriction causes no volume change. This is true for isotropic ferromagnetic metal. 

The first assumption allows the Maxwell-Faraday and Maxwell-Ampere equations to be written as: 

 ,
B

E
t

 (1a)  

 H J . (1b)  

Besides, the relations between the magnetic field B


 [T], the magnetic excitation field H


 [A.m
-1

] and 

the magnetization field M


 [A.m
-1

] are: 

 0 ( )B H M , (2a)  

 M H , (2b) 

 0B H , (2c)  

where µ0 is the vacuum permeability (=4πx10
-7

 H.m
-1

), µ is the magnetic permeability and χ the 

magnetic susceptibility. Here, for sake of simplicity, we further assume that magnetic permeability of 

the material  µ is constant; this assumption is verified as long as B


 linearly varies with H


. It shall 

otherwise be accounted for as a matrix [1] whose components vary with both the frequency and the 

amplitude of the magnetic field [2, 3]. 

From now on, we assume that the current flows in the coil along the y-axis. With the help of Ohm’s 

law and under the few assumptions made, the magnetic excitation field is a solution of the following 

system of equations:  

 x zH H

x z
, (3a)  

 0yH , (3b) 

 
2 2

02 2
0z zH j H

x z
. (3c)  

The current in the electric circuit is now written as a Fourier series (as done in [4, 5]). The current 

distribution can be described as a sequence of 0, 1 and -1 values along the z-axis. This Fourier series is 

denoted by S(z) and is given by: 

 
0 0

( ) ( ) cos( ) sin( )c s
n n n n n

n n

S z S z S s z S s z . (4)  

The integral formulation of Maxwell-Ampere law is used to write boundary conditions of equation 

(3c) just below the electric circuit of the EMAT, at x = g where g [m] is the lift-off. One gets: 

 ( , ) ( )
2

A
z

I
H g z S z

a
, (5)  

where I denotes the current intensity [A] and a, the wire width [m]. Superscript "A" stands for 

quantities defined in air. With this boundary condition, equation (3c) for magnetic field is solved in the 

volume between the coil and the plate. One gets 
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0

( , ) ( )exp ( ) for 0,
2

A
z n n

n

I
H x z S z s g x x g

a
. (6)  

The solution for H in the plate is then obtained by solving equation (3c) by taking into account the 

continuity of tangential field at the interface between air and the plate. After simple algebra, the 

elementary solution of this differential equation is obtained as: 

 
0 0

( , ) ( )exp( )exp( ) , ( , ) ( )exp( )exp( )
2 2

n
x n n n z n n n

nn n

sI I
H x z S z s g q x H x z S z s g q x

a q a
 (7)  

1/2 1/22 2
0with 2 /  and  2 / .n nq s j  

This is a separate variable solution in x and z. Its z-dependency is a function of the coil geometry 

only, through the Fourier series S(z). Its x-dependency is a decreasing exponential with depth that is a 

function of coil parameters and material characteristics through the penetration depth  [m].  

2.2.  Body forces generated by a magnetic field into a ferromagnetic medium 

As mentioned in the introduction, considering a plate made of a ferromagnetic material makes it 

necessary to account for two more forces than the sole Lorentz’s forces an EMAT creates in non-

ferromagnetic one. The three forces to consider generated by the magnetic field imposed by the 

EMAT are thus the Lorentz’s force plus the magnetization and the magnetostriction forces. The 

present paragraph aims at expressing them.  

2.2.1.  Lorentz’s force. The Lorentz’s force results from the interaction of the eddy current density 

HJ e


 created by the coil with the total magnetic field; the total magnetic field is the sum of the 

static magnetic field 0B


 of the magnet and the dynamic magnetic field Hµµ


0 , as calculated in the 

previous paragraph. The force is expressed by: 

 0 0( ) ( )LF H B H . (8) 

2.2.2.  Magnetization force. The interaction between the dynamic magnetic field H


 and the 

magnetization vector of the magnet 0M


and that of the metal M


induces the reorientation of magnetic 

dipoles in the metal. This results in the so-called magnetization force, expressed by: 

 0 0( ) ( )MF µ µ H M M . (9)  

2.2.3.  Magnetostriction force. This force is generated by deformation of magnetic domains due to the 

interaction between the dynamic magnetic field and the static magnetic field. It is classically compared 

to piezoelectricity and often called “piezomagnetic” effect. The (6x3) tensor e of piezomagnetic stress 

coefficients is introduced to derive the magnetostriction stress tensor as 

 jIj
I
MS

He , with I {1,…, 6} , (10)  

from which the magnetostriction force is readily obtained. The force is given by: 
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MS

y MS MS MS
MS

z MS MS MS
MS

F
x y z

F
x y z

F
x y z

 (11)  

In a more condensed form, one writes: 

 ( )t
MSF eH , (12)  

where the notation t  denotes a modified gradient as written by Auld [6].  

Note that e  itself depends on the total magnetic field, sum of the static and dynamic terms as 

mentioned previously. The former term is of higher amplitude than the latter. As a consequence, we 

consider here that dynamic effects are negligible, as far as the evaluation of e  is concerned. However, 

variations of e  as a function of the amplitude of the static field result from quite complex 

microphysics phenomena. Readers interested in a detailed discussion about the possible variations of 

e  are referred to [7]. In what follows, we consider that the various components of e  involved in the 

calculation of the magnetostriction force are constant values. As a consequence, doubling frequency 

effect sometimes described in the literature [8, 9] cannot be accounted for.  

2.3.  Transformation of body forces into equivalent surface stresses 

The three body forces created by the EMAT could be straightforwardly integrated to predict the elastic 

wave field they generate, in the form of a triple (volume) convolution integral of the forces with the 

elastodynamic Green’s function for the problem in hand. However, since they were all expressed as 

functions of the magnetic field calculated in paragraph 2.1., they also exponentially decrease with 

depth, with a decreasing factor δ (penetration depth).  

To avoid integrating forces onto a volume, Thompson [10] developed an approximate modelling 

approach to transform the volume integral over forces onto a surface integral over equivalent surface 

stress. The approximation used, which we re-develop in what follows, is all the more accurate since 

forces are confined in the vicinity of the surface where the EMAT is used. 

The elastic wave equation to be solved is given by the following equation where the right-hand side 

is the sum of the various forces described above. We have: 

 
2

2
( ) ( . )L L L L M MS

u
u u F F F

t
, (13) 

where u


 is the particle displacement [m], ρ the material density [kg.m
-3

] and λL and μL, the Lamé’s 

constants [Pa] from Lamé’s equation for an isotropic material. 

From now on, we restrict our study to the generation of SH waves, propagating in the (x, z) plane 

polarized in the y-direction. Therefore, the problem in hand is bi-dimensional and we only have to 

predict the y-component of the particle displacement generated by forces applied in the y-direction. 

This restriction, which may seem severe at first glance, corresponds to actual symmetry of testing 

configurations of interest, in particular, for weld inspections (see figure 1); moreover, it leads to 

interesting simplifications in subsequent calculations. Note that the overall approach can be extended 

to the case of Lamb wave generation where forces to be considered apply along x  or z  direction and 

the wave particle polarization belongs to the (x, z) propagation plane.  

Since the problem is 2D, the general triple integral over body force sources is restricted to a double 

integral in the (x, z) plane. Under the above assumptions, the SH wave displacement at an observation 

point r


can be written in the form of the following convolution Green’s integral as: 
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2 0

0 0 0 0

2

( ) ( , ) ( )

L

y yy y

L

u r G r r f r dx dz , (14)  

limited along z  by the size L of the EMAT, and where Gyy denotes the only involved component of 

the Green’s tensor thanks to the 2D / SH symmetry considered here. The source term reduces to 

 0 6 6 4 4
0 0 0 0

( ) ( ). x xz z
y L M MS y x z x z

H HH H
f r F F F e e e e e

x x z z
, (15)  

where only magnetostriction actually contributes, other forces being oriented in the (x, z) plane.  

The detailed derivation for transforming body force convolution integral into a surface stress 

convolution integral is given in Appendix. It allows us to re-write equation (14) as: 

 

2 2 2

0 02
44 02

1
( ) ( , )

2

L

y y y yy

L

u r T N G r R dz
C z

, (16)  

where 0 0 0(0, )R r z , Ty and Ny defined in the Appendix are respectively the zeroth and the second 

order moments of body force fy.  

2.4.  Green’s function for SH waves generated in a plate by a surface stress 

In equation (16), the Green’s function, not explicitly given, stands for the elastodynamic solution of 

the problem of an elementary source at the surface of an elastic half-space. For solving the radiation in 

a plate, it is more convenient to make use of a more adapted Green’s function that accounts for the 

finite thickness of the plate. More specifically, we want to derive such a function as a modal series of 

SH guided waves. This is done in the present subsection by using the integration over the plate 

thickness of the complex reciprocity relation [6].  

Assuming a line source (along y) acting at (x0, z0), the reciprocity relation described in [6] leads to 

the following formal relation 

 
* * *

0
* *

04 ( , ) 0yy m m m

x
G j z j z j z
n mn m n n m x

n x h

A z z e P v e v e e
z

, (17)  

where amplitudes of the n modes are obtained as solutions for the line source as 

 ( , ) ( ) ( ) , ( , ) ( ) ( )yy yyG G

n n n n

n n

v x z A z v x x z A z x , (18)  

and where the state “m” is an arbitrary propagative mode: 

 ( , ) ( ) , ( , ) ( )m mj z j z
m m m mv x z v x e x z x e . (19)  

The factor Pmn arises from the complex orthogonality relation and is given by [6, 11]: 

 
0

* *1
( ).

4
mn n m m n

h

P v v z dx . (20)  

The symbol * stands for conjugate complex values. Besides, the boundary conditions and the initial 

conditions are: 

 0

0 1 0

( 0, ) ( , ) 0 , ( , ) 0 , ( 0, ) 1 0 0 ( )

0 0 0

m x m x n nx z e x h z e x h z x z z z , (21)  
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where h is the plate thickness and δ the Dirac function. Equation (17) becomes: 

 
* * *

* *0
0 0

( , )
4 ( , ) 4 ( 0) ( )

yy

yy m m m

m

G
G j z j z j zn
n m mn mn y

n n

A z z
A z z j e P e P v x e z z

z
, (22)  

where ( 0)
myv x  is the amplitude of the particle velocity along the y-direction for the “m mode” 

evaluated at the top surface of the plate and z is the distance between the line-source and the 

observation point.  

Here, only real propagative modes are studied, inhomogeneous and evanescent modes vanishing far 

from the source. Therefore, conjugate complex values are equal to the real ones. Orthogonality 

relation implies “m = n” [6]. Thus, modal amplitudes verify the following first order differential 

equation: 

 0 04 ( , ) ( 0) ( )yy

m

G

mm m m yP j A z z v x z z
z

, (23) 

which is easily solved as: 

 0
0 0( , ) ( 0) ( ) ( 0)

4 4

m m
yy m m

m m

j z j z
G j j z
m y y

mm mm

e e
A z z v x e z d v x e

P P
. (24) 

This modal amplitude is that of the m-th propagative SH mode in a waveguide excited by a line 

source of tangential stress. Their wavenumber βn is given analytically by: 

 
1/2

22

n
L

n

h
. (25)  

2.5.  Modal amplitude of SH guided modes generated by an EMAT 

Thanks to the modal decomposition, the displacement Gu  generated by a tangential stress line source 

in the plate is now written as: 

 0
0 0( , ,[ ]) ( , ) ( ) ( 0) ( )

4

m
yy m

m

j z
G j z

G m m y m
mmm m

e
u x z z A z z u x v x e u x

P
. (26)  

This solution is now used for predicting the field radiated by forces created by an EMAT. Body 

forces have been transformed into equivalent surface stress that can be extracted from equation (16) in 

the form of an operator as 

 
2 2

0 2
44 0

1
( )

2
eq y yz T N

C z
. (27)  

Equation (16) was derived in the Green’s function convolution integral formalism assuming the 

Green’s function shall verify free boundary condition at x = 0 (half-space solution). The Green’s 

function derived in the previous subsection as a modal series also verifies the same boundary 

condition plus a similar condition at the boundary x = – h. At this surface, sources of body force may 

be considered as not contributing; this is true while h>> , a relation which is almost always verified 

for typical frequencies and materials of interest in NDT applications. Therefore, Green’s function for 

the elastic plate can be substituted for the original half-space solution in equation (16). By doing so, 

equation (16) straightforwardly becomes the solution for SH guided waves since the new kernel was 

built to account for the guided propagation. The particle displacement radiated at (x, z) by an EMAT is 

then found after rather simple algebraic calculations that follow: 
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2 2

2 22

022
44 0

2
2

44

( , ) ( ) ( , ,[ ]) ( ) ( , ,[ ])

1
( ) ( 0)

4 2

1
( ) ( 0)

4 2

m

m

m

m

m

L L

y eq yy eq G

L L

j z L
j z

m y y y
L

mmm

j z

m y y y m
mmm

u x z z G x z z dz z u x z z dz

e
u x v x T N e dz

P C z

e
u x v x T N

P C
0

0

2

0
2

2
2

0
2

1
( ) ( 0) .

4 2

m

m

m

m

L
j z

L

j z L
j z

m y y y
L

mmm

e dz

e m
u x v x T N e dz

P h

 (28) 

The modal amplitude for the problem of the tangential surface stress generated by an EMAT is 

finally given by: 

  0

2
2

0
2

1
( ) ( 0)

4 2

m

m

m

j z L
j z

m y y y
L

mm

e m
A z v x T N e dz

P h
. (29) 

It is analytically related to EMAT characteristics through the moments of body forces, and also 

related to material characteristics, again through the moments but also through the propagation terms.  

2.6.  Brief summary of the theoretical model derived 

The technical content of this section led to a semi-analytical solution for the modal amplitude of SH 

modes radiated by an EMAT into a ferromagnetic plate. To summarize, the first step consists in 

obtaining the magnetic field created by the specific wire configuration of the EMAT which writes as a 

Fourier series given by equation (7). The second step consists in calculating the body force generated 

by the EMAT which depends on the magnetic field; in the present configuration considered, the force 

to take into account is only the magnetostriction expressed by equation (12). In the third step, the 

zeroth and second order moments of this force are calculated by means of equation (A3). The fourth 

and final step consists in computing the convolution integral given by equation (29) to get the 

amplitude of the SH guided modes that exist at the working frequency considered. By Fourier 

synthesis, it is then possible to predict the transient field radiated by the EMAT. 

In what follows, modal amplitudes for various EMATs are computed using the present model. 

3.  Two examples of application 

3.1.  Radiation by a meander-coil EMAT 

A most studied EMAT is the so-called meander-coil. In this first example, the various calculation 

steps with intermediate results are shown. Current in the coil can be described as a function of z as 

shown by figure 2. This function is decomposed as a Fourier series given by: 

 
0

4 2(2 1) (2 1)
( ) cos sin

(2 1)
n

n z a n
S z

n D D
. (30)  

This EMAT is graphically described by figure 2. 
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Figure 2. Left: Side view of a meander-coil EMAT. Right-top: Top view of the same EMAT. Right-

bottom: a representation of the current passing through the coil. 

 

In this example, the characteristics of the EMAT, of the material (iron) and the sampling in space 

and frequency are recorded in table 1: n is the number of wires, nS is the number of terms in the 

Fourier series, σ is the electrical conductivity and µ is the magnetic permeability of the material, nz is 

the number of calculation points along the z-axis, nx is the number of calculation points along the x-

axis (the sampling is of 101 points for a depth of ten times the penetration depth δ, then of 10 points in 

the remaining thickness), fmin is the first calculation frequency, fmax the last, and finally, nf is the 

number of calculation frequencies. 

 

Table 1. Characteristics of the EMAT, the material and the sampling in space and frequency. 
 

n 17 -  ρ 7700 kg.m
-3

  nz 251 - 

a 0.0005  m  h 0.003 m  nx 101+10 - 

D 0.002  m  μL 7.617 10
10
 Pa  fmin 0.1 MHz 

nS 50 -  σ 9.93 10
6
 S.m

-1
  fmax 5 MHz 

g 0.0001  m  μ 10000 -  nf 501 - 

 

The magnetostrictive tensor e [N.A
-1

] is considered as not varying with the dynamic magnetic 

field. In our computations, we take: 

 

4 4

4 4

1.10 2.10

1.10 2.10

te . (31)  

Most of the values are not given because they are not involved in equation (15). A more detailed study 

of this tensor [7, 12] shows that most of these coefficients actually equal zero and that the others are 

expressed as functions of other material parameters. This has not been used here; it may describe 

better magnetostriction in particular circumstances. Figure 3 displays the current Fourier series S(z).  
 

 
Figure 3. Current Fourier series S(z) of a meander-coil. 
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It is a good approximation of the real current spatial distribution, with limited Gibbs phenomenon. 

The magnetic field created in the plate for an excitation frequency of 1 MHz is then calculated and 

shown by figure 4. The penetration depth effect is clearly visible: the field amplitude drastically 

decreases at very short distance of the surface. The body force is calculated and plotted on figure 5 

(left). The corresponding surface stress is shown on figure 5 (right). Note that these plots display the 

absolute values of complex quantities. In practice, at a given frequency, the tangential surface stress 

acts on the plate surface with alternating positive and negative sign along the transducer length. 

Finally, the modal amplitude for different modes as a function of frequency are calculated and plotted 

on figure 6 (left). On figure 6 right, only the modal amplitude of the SH0 mode is plotted. 
 

   
 

Figure 4. Magnetic field as a function of x (depth) and z (transducer length) created in an iron plate by 

a meander-coil EMAT at a frequency of 1 MHz. Left: x-component. Middle: z- component. Right: 

zoom on the z- component in the region near the top surface of the plate. 
 

       
Figure 5.  Body force (left) as a function of x (depth) and z (transducer length) and its equivalent 

surface stress (right) created by a meander-coil EMAT in an iron plate at 1 MHz. The equivalent 

surface stress is given for the SH0 mode only. 
 

 

Figure 6. Left: modal amplitude over the frequency (in MHz) of the first four SH modes generated by 

the meander-coil. Right: same as left but only the SH0 mode is shown. 
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The modal amplitude variations with frequency for the different modes have a rather similar overall 

shape. The peak amplitudes are roughly equal and a resonance effect is clearly seen for all the modes 

considered. This last effect is due to the presence of the function sinc in the analytical expression of 

the modal amplitude typically of the form: sinc ( ) 2m ns L . When the spatial periodicity of the 

coil, represented by the term sn, matches the wavelength βm, the function sinc takes its maximal value. 

This arises at a frequency which differs from one mode to another. 

3.2.  Radiation by a uniform EMAT 

A uniform EMAT is now considered as shown by figure 7.  

S(z)

Top view

z

x

y
plate

0

- h

DD a

g

Side view
+

cc

 
Figure 7. Left: Side view of a uniform EMAT. Right-top: Top view of the same EMAT. Right-

bottom: a representation of the current passing through the wires. 
 

In the following calculations, the two parameters a and c are equal. Other parameters (material etc.) 

are the same as those used for the meander-coil. On figure 8 are plotted modal amplitudes of the first 

four SH modes radiated for the uniform EMAT (left) from which is extracted that of the SH0 mode 

(right). A similar plot was presented for the meander-coil EMAT in figure 6.  
 

 
Figure 8. Left: modal amplitude over the frequency (in MHz) of the first four SH modes generated by 

the uniform EMAT, with c=a. Right: same as left but only the SH0 mode is shown. 
 

This time, modal amplitudes vary with frequency from one mode to another. The first mode has its 

maximal value at null frequency; this continuous component was likely to appear with a uniform 

loading whereas it does not exist with spatially alternating loading of a meander-coil. Again, a 

modulation of amplitude is visible as for the meander-coil case; similarly, peak values correspond to a 

resonance when wire spacing coincides with the wavelength.  

4.  Conclusions 

An analytical solution of the modal amplitude of SH guided modes generated by EMAT in a 

ferromagnetic plate has been developed. In the chain of sub-models developed for deriving the final 

formula, several offer more general capabilities to address other configurations than that of SH guided 

waves. In the present case, the formula developed allows fast and easy parametric studies if required 
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(such as those necessary for optimizing the design of a transducer). Experimental validations, 

extension to the 3D case and radiation of both surface and bulk waves will be further investigated. 

5.  Appendix. Transformation of body force into surface stress through a Taylor’s series  

The detailed derivation of the transformation of body force convolution integral into a surface stress 

convolution integral is complex and requires several steps of calculation. This calculation starts with 

the expression of the particle displacement as given by equation (14). Because the spatial variations of 

the Green’s function are very low compared to those of body forces, the Green’s function can be 

approximated by a Taylor series at the surface of the half-space. Here, the first three orders are taken 

into account: 

 0 0

0

2
0 0 0 02 2

0 0 0 0 0 02
0 0

( , ) ( , )1
( , ) ( , )

2

yy x yy x

yy yy x

G r r G r r
G r r G r r x x o x

x x
. (A1)  

To simplify notations, the point 
00 0xr  is denoted 0R  in what follows. Substituting equation (A1) 

into equation (14) yields 

 
2 2

0 0

0 0 0 0 02
0 02

( , ) ( , )1
( ) ( , ) ( ) ( ) ( )

2

L

yy yy

y yy y y y

L

G r R G r R
u r G r R T R M R N R dz

x x
, (A2)  

where Ty, My and Ny denote moments of the body force fy, defined by: 

 
0 0 0

2
0 0 0 0 0 0 0 0 0 0 0( ) ( ) , ( ) ( ) and ( ) ( ) .y y y y y yT R f r dx M R x f r dx N R x f r dx  (A3)  

The following development aims at simplifying the derivative of the Green’s function Gyy. This 

requires returning momentarily in 3D space. Using the definition of the strain tensor and the isotropy 

of the material, the local equilibrium Lamé’s law is written as 

 0 0 0( ) ( ) ( )ij j i

j

K r u r f r , (A4)  

0

2 2 2 2 2
2

11 44 12 44 12 442 2 2
0 0 0 00 0 0

2 2 2 2 2
2

12 44 11 44 12 442 2 2
0 0 0 00 0 0

2 2

12 44 12 44
0 0 0

where  ( )

( ) ( )

( ) ( )

( ) ( )

ijK r

C C C C C C
x y x zx y z

C C C C C C
x y y zy x z

C C C C
x z y

2 2 2
2

11 442 2 2
0 0 0 0

C C
z z x y

(A5) 

and where the components of the compliance matrix C are: 

 12 44 ; 11 12 44; 2 2L L L LC C µ C C C µ . (A6)  

The next steps will not solve the equations for the Green’s function but develop some conditions 

that will help us to simplify equation (A2). By multiplying equation (A4) by Gki, then, summing over i 

and finally integrating over the space, one gets: 

 
0 0

0 0 0 0 0 0 0 0 0 0 0

,

( , ) ( ) ( ) ( , ) ( )ki ij j ki i

i j i

G r r K r u r dy dz dx G r r f r dy dz dx . (A7)  
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Using the definition of the displacement as a spatial convolution between the Green’s functions and 

the body forces, the displacement is now re-written as: 

 
0

0 0 0 0 0 0

,

( ) ( , ) ( ) ( )k ki ij j

i j

u r G r r K r u r dy dz dx . (A8)  

Moreover, free boundary conditions are assumed on the surface of the half-space. Integrating by 

parts each term of the right-hand side of this last equation, using the boundary conditions and the fact 

that G  and u  tends to zero while the integration point tends to infinity, equation (A8) becomes 

 

0

0 0 0 0

00 0
0 11 12

0 0 0

0 0
0 44

0 0

0
0 44

0

( ) ( ) ( , )

( , )( , ) ( , )
( )

( )

( , ) ( , )
( )

( , ) (
( )

j ij ki

kykx kz
x

k

ky kx
y

kx kz
z

u r K r G r r dx

G r RG r R G r R
u R C C

x y z
u r

G r R G r R
u R C

x y

G r R G
u R C

z

0 0

,

0

0

, )

i j

dy dz

r R

x

. (A9)  

The conditions for the existence of G are then: 

 

3
0 0 0

00 0
11 12

0 0 0

0 0 0 0

0 0 0 0

( ) ( , ) ( ) ,

( , )( , ) ( , )
0 ,

( , ) ( , ) ( , ) ( , )
0 and 0 ,

ij ki kj

i

kykx kz

ky kx kx kz

K r G r r r r

G r RG r R G r R
C C

x y z

G r R G r R G r R G r R

x y z x

 (A10)  

where δkj is the Krönecker symbol. 

Using equations (A10) and (A4), the conditions for k = y are: 

2 2
0 0

0 0 0 0 0 0 12 44
0 0 0 0

2 2 2
2

11 44 02 2 2
0 0 0

( , ) ( , )
( ) ( , ) ( ) ( , ) ( ) ( , ) ( )

( , ) 0 ,

yx yz

xy yx yy yy zy yz

yy

G r r G r r
K r G r r K r G r r K r G r r C C

x y y z

C C G r r
y x z

 (A11a)  

 
0 0 0

11 12
0 0 0

( , ) ( , ) ( , )
0 ,

yx yy yzG r R G r R G r R
C C

x y z
 (A11b) 

 
0 0 0 0

0 0 0 0

( , ) ( , ) ( , ) ( , )
0 and 0 .

yy yx yx yzG r R G r R G r R G r R

x y z x
 (A11c and d) 

Then, differentiating the second condition of equation (A11) with respect to y0 leads to: 
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2 2 2

0 0 012

2
0 0 11 0 00

( , ) ( , ) ( , )yx yy yzG r R G r R G r RC

y x C y zy
. (A12)  

With the condition (A11a), the second derivative of Gyy with respect to x0 is: 

 

2 2 22 2 2
0 11 12 12 44

02 2 2
44 11 440 0 0

2
012 44 11 12

11 44 0 0

( , )
( , )

( , )( )( )
.

yy

yy

yz

G r R C C C C
G r R

C C Cx y z

G r RC C C C

C C y z

 (A13)  

Finally, using the third condition (A11c), the first order derivative of Gyy with respect to x0 is: 

 0 0

0 0

( , ) ( , )yy yxG r R G r R

x y
. (A14)  

The first and the second derivatives of Gyy with respect to x0, given by equations (A14) and (A13), 

are substituted into equation (A2). Returning in 2D, derivatives with respect to y0 vanish so that 

equation (A2) eventually becomes: 

 
2 2 2

0 02
44 02

1
( ) ( , )

2

L

y y y yy

L

u r T N G r R dz
C z

, (A15)  

which corresponds to equation (16) in the body of the paper. 
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