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Abstract. We test and optimize a multivariate discriminant software package, based on the
Support Vector Machine (SVM) algorithm, to reduce the multi-jet background events in the
channel pp̄→ eν + jj̄. We use the CDFII data-set, collected at the TeVatron pp̄ collider, where
this channel provides the signature for many important physics processes: e.g. associated Higgs
production, WZ, single top events. The Multi-jet background can be large and difficult to reject
but, in this paper, we show that an appropriatly trained SVM can handle it in an effective way.
The developed programs perform training set selection, efficiency maximization and consistency
checks; we also discuss the robustness of the discriminant. A classification accuracy ≥ 95% can
be reached using Monte Carlo simulated signal and a data-driven background model (limited
by statistic) with a background rejection of ' 90%.

1. Introduction
Our signal consists in a W boson, decaying into e ν, and two jets. We use the Support
Vector Machine (SVM) algorithm to reduce the multi-jet (also named “QCD background”)
contamination, where the electron and the neutrino are faked by mis-measured jets.

We developed a software package, based on LibSVM [1] library, able to perform algorithm
training, variable ranking, signal discrimination and robustness test.

Despite the small probability of a jet faking e and ν, the large cross section of multi-jets
events at hadron colliders makes this process a dangerous background to many physics searches.
As we are interested in rare processes (eg. W/ZH, single top) the selection must retain a large
efficiency for the signal: we set our threshold to 95%.

2. Physics Problem
We apply the SVM discriminant to a sub-sample of the CDFII [2] data-set, where we identify
the physics channel pp̄→ eν + jj̄ requiring the following selection [3]:

• one Tight Isolated Central Electron (CEM): i.e. a good quality, high PT track matched to a
significant energy deposit (ET > 20 GeV) in the central electromagnetic calorimeter, with
low activity in the nearby area of the calorimeter (Iso < 0.1);

• exactly two jets reconstructed with |η| < 2.0 and ET > 20 GeV;

• missing transverse energy (�ET > 20 GeV) as signature of the escaping neutrino.
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Multi-jet events can pass the same requirements, if one of the jets fakes the electron and
the �ET is either mismeasured by the detector, faked by misidentified (or undetected) minimum
ionizing particles or produced by neutrinos associated with decay of heavy quarks.

The selection is applied to both signal and background training samples (see below) and to
the data we want to classify. Data corresponds to a

∫
L dt ' 4.3 fb−1 collected by a high-PT

electron trigger.

2.1. Training Samples
We built our training-set using 8000 signal events and 4000 background events (to emulate the
data composition):

signal: W + 2partons Alpgen Monte-Carlo [4], where the W is forced to decay into electron
and neutrino. We have ' 105 generated events and we keep ' 9 × 104 events as a control
sample (i.e. not used for training).

background: due to the nature of the background (a mixture of physics processes and detector
response), there is no simulated models that can be trusted to provide the accurate
description needed for training. Therefore we use a data-driven approach to obtain a suitable
sample: we select events with a fake electron by reversing some of the “electron quality”
requirements (at least 2 out of the 5 cuts), used to identify the shape of the electromagnetic
shower in the calorimeter. This selection is named “anti-electron” and produces a QCD
enriched sample which is, however, limited to a few thousands of events. The sample can
be flawed by mis-modeling in some of the variable correlated to the shape variables of the
electron.

3. Support Vector Machines
The Support Vector Machines (SVM) are supervised training binary classifiers. In our problem
we can rely only on a low statistics, partly biased background model : SVM are designed to offer
a possible solution to these issues.

The SVM algorithm produces the maximum margin hyperplane between the classes of
the elements of the training set. Figure 1 shows how the problem can be formalized in the
minimization of |w|2 (with w = vector normal to the plane) with the constrain:

yi(xi · w + b)− 1 ≥ 0

{
yi = +1; i ∈ signal
yi = −1; i ∈ bkg

(1)

Figure 1. An example of SVM: two
classes of vectors are represented by
red and blue dots. The plan leading
to a maximum margin separation is
defined by the weight vector w and
the bias vector b. φ : <n 7→
H maps the points into an higher
dimentional space, so to obtain non-
linear separation. All the scalar
products appear in the form of kernel
functions K(xi, xj) = φ(xi) · φ(xj).
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The constrained maximization can be formulated introducing the lagrange multipliers α as :

L =
∑
i

αi −
1

2

∑
i,j

αiαjyiyjxi · xj . (2)

This problem has a unique solution with w =
∑

i αiyixi.
To take in account the possibility that the training set is not separable a penalization on

misclassification is added to the modulus of the w vector:

|w|2 + C
∑
i

ξi; (3)

subject to:
yi(xi · w + b) ≥ 1− ξi; (4)

ξ ≥ 0. (5)

The “penalty parameter”, C, is an Hyperparameter to be set before training.

3.1. Kernel Methods
Non-linearly separable classes of vectors can be transformed into linearly separable classes by
an appropriate function (φ(x)) that maps their elements on a space with higher dimension than
the original one. A Kernel function (K(xi, xj)) automatize this, being the composition of the
inner product appearing in the Equation 2, with the mapping φ(x):

K(xi, xj) = φ(xi) · φ(xj) with φ : <n 7→ H, K : <n 7→ < (6)

K can be defined without an explicit transformation, just respecting the necessary properties
of kernel functions (e.g. see [5])

In this work we use a radial basis function defined by the parameter γ (or gaussian kernel):

K(xi, xj) = e−γ|xi−xj |
2

(7)

The corresponding φ(x) maps to an infinite dimension Hilbert space. The parameter γ is one of
the SVM hyperparameters to be defined before the training.

4. Variable Selection and Robustness Algorithms
We extended the features input system implemented in LibSVM to perform the best variable
selection: a reduced set of features improves the robustness of the classifier, makes further tests
leaner (see paragraph 4.2) and, from a broader point of view, identifying an optimal subset of
variables gives information about their importance in the analyzed process.

To achieve all this we need to evaluate the performance of the classifier in each given
configuration, following the flowchart of Figure 2

Figure 2. Flowchart of feature selection - training - test procedure.

The performances of each configuration of variables is tested using the best SVM defined
by the parameters C and γ that give the higher classification accuracy on the training set. In
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Table 1. Definition of confusion matrix.

Signal classified as Signal Background classified as Signal
Signal classified as Background Background classified as Background

this context the performance is defined by two figures of merit: the confusion matrix of the
discriminant and the background contamination returned by a bi-component fit (signal MC +
background model) on the �ET distribution in data.

The confusion matrix of the discriminant (Table 1) is a standard tool in machine learning
classification studies: it shows the percentage of events correctly assigned or not on samples of
known label. In our case, for each configuration we run the trained SVM on the full background
sample and on the full signal Monte-Carlo sample.

The second point is one of the key features of this work: the background model reproduces
most of the distributions of the real background but the distributions fail when they are
correlated with the inverted quality cuts used to create the QCD enriched sample. It is
fundamental to have a cross check to identify mis-modeled variables. After the application
of the SVM on data, signal and full background samples, we fit the �ET distribution in data with
templates of signal and background (they account for & 90% of the data sample). We mark the
variable configuration as BAD if:

• the χ2 of the fit is greater than 5 (the requirement is loose because we expect other processes
might slightly influence the shape);

• or the fraction of mis-identified background is not consistent between the results of the fit
and the the confusion matrix.

Notice that the quality of the fit is not directly optimized by the SVM training, so we are
performing a consistency check of our classifier in an unbiased sample (data) with an independent
technique. An example of the fit is shown in Figure 5.

The procedure we described in this section has been implemented for this specific work.
Although we have not yet developed an automatic configuration system, all the software is
easily adaptable to other background rejection problems.

4.1. Grid Evaluation of the SVM
As already stated, we aim to the best classification accuracy using the smallest possible set of
variables. In this way we can easily evaluate systematics and keep track of the physics meaning
of the features. In order to fulfill this program we developed the software needed to perform
training and consistency checks for a given number of combination of variables taken from the
22 of our starting sets. Results are then displayed in an interactive scatter plot (Figure 3) where
we show background contamination derived from the fit on Y-axis and signal efficiency from
MC on X-axis. Then, it is possible to select any desired configuration and, keeping it fixed, add
other n-combinations of the remaining variables.

An extensive research over all the possible combinations of variables is unfeasible due to the
huge number of combinations: in our case with a total of 22 variables and 4 different composition
of the training sets, we have 16777212 combinations. We tried all the configuration given by 1, 2
and 3 variables, then we added, to the best results, the combinations of 2 and 3 extra variables.
After this step the best result did not improve any more.

The best result is a 6-variables configuration that exploits the maximal uncorrelated
information among the input variables. In Figure 3 is marked by a red circle.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 032045 doi:10.1088/1742-6596/331/3/032045

4



Figure 3. Different SVM configuration are displayed on a “signal-efficiency vs background-
contamination” scatter plot. Left: SVM performances resulting from the combination of 1, 2
and 3 out of 22 input variables; the circled cross shows the performance of the cut-based strategy;
the green dots are the configurations selected to add more variables. Right: SVM performances
resulting from the configuration selected by the green dots in the left plot and adding 1, 2, 3
other variables; the red circled dot shows the best configuration found.

4.2. Discriminant Robustness
We tested the robustness of the classifier by checking how the SVM accuracy is affected by the
uncertainty on the input variables. We performed a test modifying each varible by a ±10% and
keeping the others unchanged. This is a standard procedure for neural network based classifiers
in the context of particle physics and it can be considered a benchmark. Figure 4 shows a
pictorial example of that with two variables. In Table 2 we show the robustness test for the 6
variable configuration considered as the best one.

Figure 4. Visual example of the classification
(blue: background, red : signal) produced by a
SVM configuration featuring two input variables
(∆φ(e, �E corr

T ) and �EcorT , both scaled in [−1, 1]).
Classification stability can estimated by the
number of correctly classified vectors after a
variation of the input variables.

5. Results
Our algorithm produced an optimal SVM using 6 variables as input features: Lepton PT ,

�EcorT , ∆φ(e,�ErawT ) ErawT , Jet2 EcorT and the MetSignificance (a variable that relates �ET with jet
corrections). We use the training set with a �Et > 15 GeV to enhance the signal-like background
component. The best SVM configuration is shown as red circled dot in the signal efficiency
vs background contamination diagram (Figure 3) with fDataBkg ' 10% given by the fit on data,
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Table 2. Change in the classification efficiency varying the input variables by 10%.

var ε− original ε+

Lep Pt 91.4% 94.5% 92.6%

�Ecort 86.4% 94.5% 87.4%
Jet2 Etcor 92.4% 94.5% 94.1%
MetSig 88.0% 94.5% 90.0%
∆φ(e,�Erawt ) 94.2% 94.5% 94.3%
Jet2 Etraw 92.4% 94.5% 94.1%

εMC
Sgn ' 97%, from MC. We can compare this result with the state of art cut-based strategy:

fDataBkg ' 18% and εMC
Sgn ' 95%.

Besides the physics result itself our main achievement was the development of a flexible
software able to perform training, variable selection, validation, and to chose the preferred SVM
depending on maximum purity or maximum signal efficiency. Figure 5 shows how a high purity
SVM configuration works on the background reduction.

Figure 5. Result of the bi-component fit on Missing Transverse Energy (MET) shape after
the application of a SVM specifically selected to have high background rejection: data sample
(crosses) as the composition of multi-jet background (red) and W + 2jets signal samples (blue)
before (Left:) and after (Right:) the application of the SVM discirminant.
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