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Abstract. The derivation of high precision/accuracy parameters and chemical abundances of
massive stars is of utmost importance to the fields of stellar evolution and Galactic chemical
evolution. We concentrate on the study of OB-type stars near the main sequence and their
evolved progeny, the BA-type supergiants, covering masses of ~6 to 25 solar masses and a
range in effective temperature from ~8000 to 35000 K. The minimization of the main sources
of systematic errors in the atmospheric model computation, the observed spectra and the
quantitative spectral analysis play a critical role in the final results. Our self-consistent spectrum
analysis technique employing a robust non-LTE line formation allows precise atmospheric
parameters of massive stars to be derived, achieving 1o-uncertainties as low as 1% in effective
temperature and ~0.05-0.10dex in surface gravity. Consequences on the behaviour of the
chemical elements carbon, nitrogen and oxygen are discussed here in the context of massive star
evolution and Galactic chemical evolution, showing tight relations covered in previous work by
too large statistical and systematic uncertainties. The spectral analysis of larger star samples,
like from the upcoming Gaia-ESO survey, may benefit from these findings.

1. Introduction

Massive stars in the Galaxy are vastly outnumbered by lower-mass stars, like e.g. solar-type stars.
Yet, massive stars are key drivers of the dynamics and evolution of the interstellar medium (ISM).
As sources of ionizing radiation and momentum — via stellar winds and supernovae — they heat
the ISM, initiate turbulence and contribute to the enrichment of the ISM with heavy elements.
From the observer’s perspective, massive stars are Galactic beacons throughout the UV to near-
infrared wavelengths. They are observable not only nearby but out to large distances, tracing
the star-forming regions within the spiral arms of the Milky Way. Massive stars are therefore
key objects to understand the history and evolution of our Galaxy, and their study is of utmost
relevance in the framework of the Gaia mission.

We concentrate here on the study of OB (late-O and early-B) main sequence stars and their
progeny, the BA-type supergiants (BA-SGs) in order to trace their evolutionary history from
the zero-age main sequence to the late stages of their life. The present sample of 64 stars covers
a range in mass of ~6 to 25 solar masses and a range in effective temperature from ~8000 to
35000 K. Highly accurate and precise stellar parameters and chemical abundances have been
derived using robust spectral synthesis that accounts for deviations from the assumption of
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local thermodynamic equilibrium (non-LTE) and a self-consistent spectral analysis that utilizes
multiple ionization equilibria. While the method is superior to standard techniques — which
employ photometric temperature indicators or the ionization equilibrium of only one element —,
it is also more time consuming. We have therefore expanded our efforts to implement first a
semi-automatic and now an almost fully-automatic analysis procedure in order to facilitate the
study of larger star samples at similar accuracy and precision. As it will be shown here, the
efforts to obtain high-quality results from high-resolution observations at high S/N-ratio are
extremely valuable for the progress of several fields, like the evolution of the chemical elements
in the Galaxy, the evolution of stars under different conditions and also the evolution of the ISM.

In the following, we briefly describe the star sample (Sect. 2), the codes used to compute
the synthetic models in non-LTE (Sect. 3), as well as the self-consistent spectral analysis based
in simultaneous fits of individual lines of hydrogen, helium and several metals (Sect. 4). Two
main results of this work are presented, addressing the fields of stellar evolution (Sect. 5) and
Galactic chemical evolution (Sect. 6). Finally, the conclusions are drawn in Sect. 7.

2. The star sample and observations

The star sample has been carefully chosen in order to avoid observationally induced systematic
biases, see [1] for a discussion of selection criteria. The OB main sequence star sample contains 29
single, sharp-lined and chemically inconspicuous stars. The stars are located within a radius of
400 pc from the Sun. The BA supergiant sample is composed of 35 stars located at distances up
to 4 kpc from the Sun. For the whole sample of OB dwarfs and BA-SGs observations have been
collected with several high-resolution spectrographs, e.g. the Fiber-fed Extended Range Optical
Spectrograph (FEROS) and the Fibre Optics Cassegrain Echelle Spectrograph (FOCES, at the
2.2m telescopes at La Silla and Calar Alto, respectively) and the FIbre-fed Echelle Spectrograph
(FIES, at the Nordic Optical Telescope, La Palma) at high S/N-ratio (250 to 800). Details of
the observations can be found in [1, 2] for the OB sample and in [3, 4, 5] for the BA-SG sample.

3. Spectrum synthesis in non-LTE

The non-LTE line-formation computations for the OB dwarfs follow the methodology discussed
in detail in our previous studies for H and He [6], for C [7, 8], and for N, O, Ne, Mg, Si and Fe [9].
For the BA-SGs the methodology is described in [3], and references therein. In brief, a non-LTE
approach is employed to solve the restricted non-LTE problem on the basis of prescribed LTE
atmospheres. This technique provides an efficient way to compute realistic synthetic spectra in
all cases where the atmospheric structure is close to LTE, like for the stars analysed here [6].
The computational efforts can thus be focused on robust non-LTE line-formation calculations.

3.1. Models and programs

The model atmospheres were computed with the ATLAS9 code [10] which assumes plane-
parallel geometry, chemical homogeneity, and hydrostatic, radiative and local thermodynamic
equilibrium. Line blanketing was realized here by means of opacity distribution functions (ODF's)
from [11]. Solar abundances of [12] were adopted in all computations. The model atmospheres
were held fixed in the non-LTE calculations. Non-LTE level populations and model spectra
were obtained with recent versions of DETAIL [13] and SURFACE [14]. The coupled radiative
transfer and statistical equilibrium equations were solved with DETAIL, employing an accelerated
lambda iteration scheme of [15]. This allowed even complex ions to be treated in a realistic
way. Synthetic spectra were calculated with SURFACE, using refined line-broadening theories.
Continuous opacities due to hydrogen and helium were considered in non-LTE and line blocking
was accounted for in LTE via Kurucz’ ODFs. Updates of some of the published model atoms for
non-LTE computations were carried out introducing improved oscillator strengths and collisional
data from ab-initio computations, see [1, 3].
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4. Spectral analysis

Our analysis method is based on the simultaneous reproduction of all spectroscopic indicators
via an iterative line-fitting procedure aiming to derive atmospheric parameters and chemical
abundances self-consistently. In contrast to common strategies in stellar spectroscopy, this
analysis technique takes full advantage of the information encoded in the line profiles at different
wavelength ranges simultaneously. Integrated quantities like equivalent widths W are not used
in this approach. The stellar parameters primarily derived here are the effective temperature
T, surface gravity log g, microturbulent velocity £, (radial-tangential) macroturbulent velocity
¢, projected rotational velocity v sin ¢ and elemental abundances ¢(X) = log(X/H) + 12.

4.1. Stellar parameter and abundance determination

Special emphasis was given to use multiple indicators in order to minimize the chance of the
stellar atmospheric parameters and chemical abundance determination being biased by residual
systematic errors. The following spectroscopic indicators were utilized in the analysis:

e Tog: all available hydrogen and helium lines, and multiple independent ionization equilibria;
confirmation via spectral energy distributions (SEDs);

e logg: wings of all available hydrogen lines and multiple ionization equilibria; for many of the
OB dwarfs also confirmation via HIPPARCOS distances [16];

e & several elements with spectral lines of different strength enforcing no correlation between
¢(X) and the strength of the lines (equivalent to €(X) being independent of W));

e vsing and (: metal line profiles;
e ¢(X): a comprehensive set of metal lines.

Usually in stellar analyses, once the stellar parameters are fixed one commences with the
abundance determination, treating this as an essentially independent step. In our approach
the abundance and stellar parameter determination are tightly related because of the use of
ionization equilibria. In consequence, only few species are left to finalize the analysis. Another
difference to typical literature studies is the large number of spectral lines evaluated by us
per species (typically, ~150 to 250 lines are analysed in total per star), see e.g. [1, 3], and
the consistency achieved from the different ionization stages of the various elements. All the
various improvements in observations, modelling and analysis methodology facilitated results at
much higher accuracy to be achieved than possible in standard works, e.g. [17] to [29]. The
high quality of the results could be retained over a large parameter space, spanning nearly
25000 K in T and ranging from close to the zero-age main sequence (ZAMS) to the late stages
of evolution. Consequently, an excellent match of the computed and the observed spectra is
achieved globally and in the details.

4.2. A semi-automatic analysis

We have computed a comprehensive grid of models (in total of the order ~100000 synthetic
spectra) to perform the analysis. A powerful fitting routine for the semi-automatic comparison
of observed and theoretical spectra, SPAS!, provides the means to interpolate between model grid
points for up to three parameters simultaneously and allows to apply instrumental, rotational and
(radial-tangential) macrobroadening functions to the resulting theoretical profiles. Interactive
work in some decisive steps on the analysis with SPAS paid off as much more accurate results
could be obtained. Crucial was the selection of the appropriate spectroscopic indicators for
the parameter determination which may vary from star to star upon availability of specific
spectral lines (depending on stellar temperature, spectrum quality and the observed wavelength

! Spectrum Plotting and Analysing Suite, SPAS [30].



GREAT-ESF Workshop: Stellar Atmospheres in the Gaia Era IOP Publishing
Journal of Physics: Conference Series 328 (2011) 012017 doi:10.1088/1742-6596/328/1/012017

coverage). All spectral lines unsuited for analysis because of e.g. blends, low S/N, uncorrectable
normalization problems, incomplete correction of cosmics, or known shortcomings in the
modelling needed to be excluded. Also a verification and, possibly, correction of the automatic
continuum normalization lead to a gain in precision. Every element was analysed independently
and some interactive iterations for fine-tuning the parameter determination were needed in
order to find a unique solution that reproduces all indicators simultaneously. This facilitated
also to derive realistic uncertainties for the stellar parameters. The standard deviations around
the average parameter values were adopted, as derived from the various independent spectral
indicators. Likewise, uncertainties of elemental abundances were determined from the line-to-line
scatter found from the analysis of the individual features. Finally, it was thus possible to derive a
simultaneous, self-consistent solution for atmospheric parameters and chemical abundances, and
also to quantify their statistical uncertainties. The novel approach [1] provides results meeting
the same quality standard as our previous work, e.g. [8, 9].

4.8. A fully-automatic analysis

All pros and cons of the spectral analysis that have been learnt in the previous work have been
recently encoded by one of us into an even more efficient and automatic procedure, allowing
the whole previous analysis to be done even faster and at similar precision. The independent
analyses per element and several interactive iterations until convergence of all parameters are
hereby replaced by one simultaneous fit of the entire suitable spectrum (freed from features not
included in our models such as missing lines, cosmics, telluric lines, reduction artifacts, among
others). Interpolating in pre-calculated model grids, the technique applied is capable to sample
the whole multi-parameter space spanned by atmospheric parameters and elemental abundances
at the same time. For instance, line blends due to macroscopic effects (i.e. instrumental,
rotational, and macroturbulent broadening) are thus implemented absolutely correct. With
this method, atmospheric parameters and chemical abundances are objectively, simultaneously,
and self-consistently constrained by exploiting all available spectroscopic indicators.

5. Implications for massive star evolution

The availability of atmospheric parameters and elemental abundances for larger star samples
facilitates to stellar evolution models to be tested. Significant improvements in the accuracy
and precision of the observational results are in particular valuable, as they allow such tests to
be pursued in greater detail.

Energy production in massive stars is governed by the CNO cycles throughout most of their
lifetime. The nuclear-processed material may reach their surface layers through rotational mixing
already during their main-sequence phase [31] opening up a very powerful diagnostic to test
models of stellar evolution. The changes of the surface abundances reflect the actions of the
dominating CN-cycle initially, following a well-defined nuclear path.

Numerous studies of CNO abundances in massive stars of the Milky Way are available from
the literature, mostly for early B-type stars close to the main sequence and for BA-SGs. We
illustrate the results of several key publications in the N/O-N/C diagrams of Fig. 1. Some of
the more recent studies [17, 18, 19] are based on non-LTE model atmospheres, while the bulk of
the data were obtained from non-LTE line-formation computations on LTE model atmospheres
— which is equivalent to the full non-LTE approach in the cases under consideration [6].

The main-sequence stars show overall a wide range of N/O-N/C combinations, with the
deviations from the predictions increasing in the supergiants. This picture is difficult to be
interpreted — even more so if only one of the elements (like nitrogen) is considered. Moreover,
several observational data points pose a challenge for the evolution models. On the other hand,
the abundance uncertainties are very large, with a typical statistical 1o-error in abundance per
element of about a factor ~2, while systematic uncertainties are often largely underestimated
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Figure 1. Observational constraints on the mixing of CNO-burning products in massive stars
from non-LTE analyses in the literature. Mass ratios N/C over N/O are displayed. Left-hand
panel: main-sequence stars. Circles: [20]; triangles: [21]; diamonds: [22, 23, 24, 25]; squares:
[26]; crosses: [19]. Right-hand panel: BA-type supergiants. Triangles: [27], [28]; circles: [29];
squares: [17]; diamonds: [18]. Error bars can be larger than the plotting range. The lines
represent predictions from evolution calculations, for a rotating 15 M, star with v2 =300 kms~*
until the end of the main sequence: solid red line, until the end of He burning: dashed blue line
[32], and for a star of the same parameters that in addition takes the interaction of rotation and
a magnetic dynamo into account [33], until the end of the MS: dotted line, respectively. The
predicted trends are similar for the entire mass range under investigation.

(for a discussion of this see [34]) or even unaccounted for. The error bars in Fig. 1 are larger
than the entire plotting range in many cases. In consequence, no definite conclusions can be
drawn on the quality of the stellar evolution models from these data.

The behaviour of CNO abundances, previously presented for a sub-sample of 20 stars in [35],
is now shown for the whole star sample of 64 stars in Fig. 2. In contrast to the literature values
(Fig. 1), a clear and tight trend is found, confirming the predicted locus of N/O-N/C abundance
ratios. Most of our main-sequence objects cluster around the pristine Cosmic Abundance
Standard (CAS) values [1], i.e. they are unmixed, while about 1/3 of the stars show a mixing
signature of varying magnitude, following the predicted nuclear path with d(N/C)/d(N/O)=4.6
(for initial CAS abundances) tightly. Stellar evolution models based e.g. on the solar values by
[36] would predict a different nuclear path (with slope ~3.0).

However, as already indicated above, the models of [32] for rotating stars with mass loss
evolving towards the red supergiant stage (solid line in Fig. 2) predict mixing that is too low
(see [35]), in particular for most of the supergiants. Five reasons may provide an explanation.

1) Higher than average rotation velocities in the progenitor stars of these supergiants on the
main sequence may reconcile the situation for some objects.

11) Evolution models for rotating stars that also account for the interaction of rotation and a
magnetic dynamo [33] predict enhanced mixing signatures of the amount required (dotted line).
111) Some stars may have evolved in a close binary, which can also lead to enhanced mixing
associated with mass transfer.

1v) Some objects may have been siblings to 7 Sco on the main sequence, climbing up the N/O-
N/C relation even further in their further evolution.

V) Supergiants may already have evolved through the red supergiant phase (e.g., on a blue
loop) to expose first dredge-up abundance ratios, which could quantitatively also explain the
observations (dashed line).
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Figure 2. N/C vs. N/O abundance ratios (by mass) of our non-LTE analysis for the sample of
64 stars. B-type main-sequence stars are displayed as diamonds, BA-type supergiants as circles.
The symbol size encodes the stellar mass and error bars give lo-uncertainties. The different
lines describe evolutionary model predictions for 15 My, stars identical to those in Fig. 1.

6. Implications for Galactic chemical evolution

Nucleosynthesis in successive generations of stars has enriched the cosmic matter with heavy
elements ever since the first Population III stars were born. Studies of various objects like
Galactic stars, planetary nebulae and H1I regions allow the cosmic enrichment history to be
traced and the specific production sites of individual elements to be constrained. The Cosmic
Abundance Standard (CAS), derived from our sample of unmixed B-stars, provides valuable
input for the comparison of models with observations, as it marks the present-day endpoint of
Galactochemical evolution, in particular for a typical spiral galaxy like the Milky Way. Here, we
concentrate on the role of the CAS values in the context of the Galactic evolution of the light
elements CNO as traced by stellar analyses, see Fig. 3.

Our achievements in improving the precision and accuracy of the B-star analyses over
previously published work, relative to the trends in the evolution of the CNO abundances as
derived from solar-type stars, become obvious in the comparison of the left- and right-hand
panels of Fig. 3. While the enormous scatter in the B-star abundances was difficult to be
reconciled with the data from solar-type stars in the past, our data for the B-stars indicate a
high degree of chemical homogeneity, at absolute abundance values that may differ from the
solar standard.

While the investigations of the cosmic chemical evolution are currently focusing on the early
phases at low metallicity, an accurate knowledge of the present-day endpoint of the evolution
is nonetheless essential. The reason for this is that the interpretation of the data is based on
comparisons with Galactic chemical evolution models, which have to (but not always do) match
the present-day composition as a boundary condition. It is therefore important for the entire
modelling which reference values are used, solar or CAS abundances. In particular the differences
in the C/O ratio are appreciable, also with respect to the majority of nearby solar-type stars,
amounting to almost 50%. Taken at face value, this difference indicates that the C/O enrichment
of the interstellar medium in the present-day solar neighborhood occurred slower than at the
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Figure 3. Observational constraints on the chemical evolution of Galactic CNO abundances:
abundance ratios log (C/O) and log (N/O) vs. O abundance. Left-hand panels: black triangles:
early B-stars from the literature, like in Fig. 1, except for [19]. Data for low-mass stars are
displayed as green symbols — squares: solar-type dwarfs [37]; crosses: solar-type dwarfs and
subgiants [38]; diamonds: unmixed cool giants [39]; plus signs: unevolved solar-type stars [40].
Solar abundance ratios of [36] are also indicated (®). Right-hand panels: black dots: unmixed B-
type stars from the present work, black circles: unmixed stars from [2]. Data from the literature
like in the left-hand panels. The Cosmic Abundance Standard is also indicated (red star). Error
bars typical for individual stars in the present study are shown.

Sun’s place of birth.

Note that the Sun may be viewed as an extreme but still compatible case in terms of the
distribution of the stars from the present sample in the log O—-log C/O diagram, but the absolute
values for the carbon abundance differ significantly. The solar and CAS data on N/O are rather
compatible on the other hand. A systematic investigation of nitrogen abundances in high-
metallicity solar-type stars would be desirable for further comparisons.

Overall, it is astonishing how different and at the same time how similar the young and old
star populations in the solar neighborhood are. It is for the first time that this is elaborated, as
the lack of high precision and accuracy in many previous studies of early B-type stars prevented
any meaningful conclusions to be drawn.

7. Conclusions
Over the past few years, we have made great efforts to reduce uncertainties in quantitative
spectral analyses of OB-type stars near the main sequence and their evolved progeny, BA-type
supergiants. Self-consistent analyses that bring all spectroscopic indicators — Balmer, helium
lines and metal ionization equilibria — into match simultaneously yield drastically reduced
systematic errors in the determination of atmospheric parameters and chemical abundances.
More recent work focused on the development of a fully-automatic fitting routine for the analysis
of much larger samples of stars than feasible at present. We are confident that future studies of
early-type stars, like within the ESO-Gaia survey, will largely benefit from these developments.
This leap in the accuracy and precision of early-type star analyses has already produced some
exciting results. We gave concrete examples on the behaviour of the light elements CNO in the
context of stellar and Galactic chemical evolution, which will stimulate further investigations
by theorists that will give meaningful answers to several of today’s fundamental astrophysical
questions.
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