
Journal of Physics: Conference
Series

     

OPEN ACCESS

FABADA: a Fitting Algorithm for Bayesian Analysis
of DAta
To cite this article: L C Pardo et al 2011 J. Phys.: Conf. Ser. 325 012006

 

View the article online for updates and enhancements.

You may also like
Determination of Ratio of Diamagnetic
Anisotropy of a Biaxial Crystal by X-ray
Diffraction Measurement
Song Guangjie, Kenji Matsumoto, Keiji
Fujita et al.

-

Experimental mathematics on the
magnetic susceptibility of the square lattice
Ising model
S Boukraa, A J Guttmann, S Hassani et al.

-

From direct detection to relic abundance:
the case of proton-philic spin-dependent
inelastic Dark Matter
Stefano Scopel and Hyeonhye Yu

-

This content was downloaded from IP address 3.149.243.32 on 26/04/2024 at 16:50

https://doi.org/10.1088/1742-6596/325/1/012006
/article/10.1143/JJAP.51.060203
/article/10.1143/JJAP.51.060203
/article/10.1143/JJAP.51.060203
/article/10.1088/1751-8113/41/45/455202
/article/10.1088/1751-8113/41/45/455202
/article/10.1088/1751-8113/41/45/455202
/article/10.1088/1475-7516/2017/04/031
/article/10.1088/1475-7516/2017/04/031
/article/10.1088/1475-7516/2017/04/031
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjst1CgXJxSHs6rj7IFpdaiddamWThz_FxUGEEmEHz6iWImEwdCCfNk-LoVyl7GmS5OgFwYYwlAxQskKG1nVxq5yPwyoS77DYS5iTXQ6-_LuXP9lu1ZufNTKQNCPFItvFVNp9lHb0pfkUT0EbN3O6k8OAPxTAPf-xsMLAOS2Kh7TwlVZRKhaK6iHL_F0D3_QeBQqSBOUZN8zUgSWgFj52Dw_kDNQ0pc-mEJPwyjypbivhF_WW1YDdQ7iDIRugGSpU-pFP25ovV434WFVaoIoO8U6QiP4ZyYbvZM75mCEPn9HhSeBtbiON_4JKu3SHmnfhCTcvRRmpGbgXwBSVpUvI_PUoRHtbZA&sig=Cg0ArKJSzGMsFHodyddm&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


FABADA: a Fitting Algorithm for Bayesian

Analysis of DAta

L.C. Pardo1, M. Rovira-Esteva1, S. Busch2, M.D. Ruiz-Martin1,

J. Ll. Tamarit1
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Abstract. The fit of data using a mathematical model is the standard way to know if the
model describes data correctly and to obtain parameters that describe the physical processes
hidden behind the experimental results. This is usually done by means of a χ2 minimization
procedure. Although this procedure is fast and quite reliable for simple models, it has many
drawbacks when dealing with complicated problems such as models with many or correlated
parameters. We present here a Bayesian method to explore the parameter space guided only
by the probability laws underlying the χ2 figure of merit. The presented method does not get
stuck in local minima of the χ2 landscape as it usually happens with classical minimization
procedures. Moreover correlations between parameters are taken into account in a natural way.
Finally, parameters are obtained as probability distribution functions so that all the complexity
of the parameter space is shown.

1. Introduction

Science is based on the success of an hypothesis to describe experimental results, i. e., is based on
the amount of “truth” and “falsity” of an hypothesis when contrasted with experimental results
[1]. In order to find a quantitative method to determine this “amount of truth”, hypotheses
in science should at the end be reduced to a mathematical expression depending on a set of
parameters with some physical meaning. The “amount of truth” is then determined by fitting
the mathematical model to some experimental data. To quantify that, a figure of merit χ2 can
be defined as

χ2 =
n∑

k=1

(Hk{Pi} −Dk)
2

σ2

k

(1)

where n is the number of experimental points, Dk (k = 1, . . . , n) are the experimental data,
Hk{Pi} (k = 1, . . . , n) are the values obtained from our hypothesis (the mathematical model)
using the {Pi} (i = 1, . . . ,m) set of parameters contained in the model, m is the number of
parameters, and σk (k = 1, . . . , n) are the experimental errors associated with the respective
measured points Dk.

Data fitting is usually done by minimizing χ2 (equation 1) using the Levenberg-Marquardt
algorithm, which aims to find the minimum of the χ2{Pi} hypersurface. This fit procedure has
a twofold goal: first, to find the set of parameters {Pi} which best describes the experimental
data within their errors, and second, using this set of parameters, to define a figure of merit
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which quantifies the “amount of truth” of the proposed hypothesis, taking into account how
well it describes the data. In order to be able to compare different hypotheses with different
numbers of parameters, it is reasonable to define a figure of merit which penalizes the addition

of parameters such as the reduced χ2 defined as χ2
ν = χ2

n−m
. In this equation, n is the number of

experimental points and m is the number of parameters, so n −m is the number of degrees of
freedom.

This way to quantify how well experimental data are described by a hypothesis is based on
what is called a frequentist approximation of the problem [2], and has many drawbacks associated
with both the fit procedure (it usually gets stuck in local minima of the χ2 hypersurface when
the model is complex) and the way to quantify the correctness of the hypothesis describing
experimental data. The final result using this method is characterized by a set of parameters
with an associated error (Pk ± εk) and the figure of merit χ2

ν . This way of quantifying the
best fit to the data is based on the supposition that there is only one minimum in the χ2{Pi}
hypersurface within the data error, and that the functional dependence of χ2{Pi} is quadratic
on each parameter i (i. e., one can stop at the second term of a Taylor expansion of the obtained
minimum), and thus allowing only symmetric errors. Moreover, errors are usually calculated
disregarding possible correlations between parameters and are thus generally underestimated.

The main difference of Bayesian inference from the previously exposed frequentist method
is the absence of any supposition on the χ2{Pi} landscape which will rather be explicitly
explored taking into account experimental data. The method results in a different way to
express fitted parameters and the figure of merit showing all the complexity of the final solution:
they become Probability Distribution Functions (PDFs) obtained directly from exploring the
χ2{Pi} hypersurface.

Although Bayesian methods are widely used in astronomy or biology [3], they are scarcely
used in condensed matter and usually for very specific tasks such as in the analysis of QENS
data [4], and the analysis of diffraction data [5, 6]. We present in this work a general method
to perform fittings and to analyze results based exclusively on probability by using Bayesian
inference.

Although the presented Bayesian method is general, it is specially useful in three situations.
Firstly, when the classical fitting procedure gets stuck in a local minimum of the chi squared
hypersurface, i.e. when the present parameter set does not correspond to the best obtainable
fit but any small parameter value change even decreases the fit quality. This may happen for
example when fitting the intramolecular structure to diffraction data [7] but is a well known
problem in basically every fit normally surpassed by a careful choice of the initial parameter
values. Secondly when an intricate model selection shall be performed, such as in the case of
models that describe molecular motions using QENS [8] or dielectric data [9]. Finally when the
model is ill defined and more than one combination of parameters is able to describe data, or
when data only allows to limit the range of parameters but not to obtain a best fitting value
[10].

2. Data analysis using the Bayesian method

2.1. What is behind the ubiquitous χ2?

The objective of the so called Bayesian methods [4, 14] is to find the probability that a hypothesis
is true given some experimental evidence. This is done by taking into account both our prior
state of knowledge concerning the hypothesis, and the likelihood that the data is described by the
proposed hypothesis. Using probability notation, and considering the case that the experiment
consists of a series of data Dk and that the hypothesis is represented by Hk, we can relate the
aforementioned probabilities using the Bayes theorem [13, 14]:

P (Hk |Dk) =
P (Dk |Hk)P (Hk)

P (Dk)
(2)
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Figure 1. Poisson statistics fol-
lowed by data in a counting ex-
periment such as a scattering one
(lines), and its usual Gaussian ap-
proximation (points) for an increas-
ing number of expected counts. For
an increasing number of counts, the
Poisson distribution (line) can be
approximated by a Gaussian func-
tion (points) with σ =

√
n, being

the number of counts n. The inset
shows that for a number of counts
as great as 100 the approximation
works quite well.

where P (Hk |Dk) is called the posterior, the probability that the hypothesis is in fact describing
the data. P (Dk | Hk) is the likelihood, the probability that our data is well described by
our hypothesis. P (Hk) is called the prior, the PDF summarizing the knowledge we have
beforehand about the hypothesis, and P (Dk) is a normalization factor to assure that the
integrated posterior probability is unity. In the following, we will assume no prior knowledge
(maximum ignorance prior [14]), and in this special case Bayes theorem takes the simple form
P (Hk |Dk) ∝ P (Dk |Hk) ≡ L, where L is a short notation for likelihood.

In order to quantify the Bayes theorem, we need first to find the likelihood that one data
point Dk is described by the mathematically modeled hypothesis Hk. In a counting experiment,
this probability follows a Poisson distribution. It can be well approximated by a Gaussian
distribution with σ =

√
Dk (see also [14]) if the number of counts is high enough as it is shown

in figure 1. Therefore for one experimental point (k = i, i = 1, . . . , n):

P (Dk=i |Hk=i) =
Hk

Dk e−Hk

Dk!
≈ 1

σ
√
2π

exp

[
−1

2

(
Hk −Dk

σk

)2
]

(3)

Where on the right hand side of the expression it is not explicitly written that the equation is
related to a single experimental point i = k for simplicity. The likelihood that the set of data
points Dk is correctly described by the hypothesis Hk can be therefore written as

P (Dk |Hk) ∝
n∏

k=1

exp

[
−1

2

(
Hk −Dk

σk

)2
]
= exp

[
−1

2

n∑
k=1

(
Hk −Dk

σk

)2
]
= exp

(
−χ2

2

)
. (4)

The figure of merit χ2 is therefore related to the likelihood that the data is well described
by the hypothesis Hk. The probability theory behind χ2 also allows to deal with the case of
experiments with only few counts where the Gaussian approximation, for which χ2 = −2 lnL,
is not valid anymore and the Poisson distribution must be employed, simply by redefining χ2

[14] as

χ2 = −2 ·
n∑

k=1

ln

[
Hk

Dke−Hk

Dk!

]
(5)
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Figure 2. Upper row: PDFs as-
sociated with the center xc, am-
plitude a and width w of a Gaus-
sian function (solid circles) together
with the χ2(Pi) around its mini-
mum value, fixing all parameters
except Pi (lines). Bottom row:
χ2(Pi, Pj) plots showing the corre-
lation between parameters, the con-
tour lines have a distance of Δχ2 =
1.

2.2. The Bayesian method

The probabilistic understanding of χ2 makes it possible to define a unique method, first to fit
the experimental data, and then to analyze the obtained results, using a Markov Chain Monte
Carlo (MCMC) technique where a set of parameters P new

i is generated from an old set P old
i by

randomly changing one of the parameters, i. e., P new
i = P old

i +(RND−0.5) ·2ΔPmax
i . In the last

equation ΔPmax
i is the maximum change allowed for the parameter and will be called parameter

jump for short, and RND is a random number between 0 and 1. The probability to accept the
new set of parameters is given by

P (H(P new
i ) |Dk)

P (H(P old
i ) |Dk)

= exp

(
−χ2

new − χ2

old

2

)
(6)

where χ2
new and χ2

old
correspond to the χ2 (as defined in equation 1) for the new and old set of

parameters. Both fitting and analysis consist therefore in the successive generation of parameter
sets {Pi} (Markov Chains) with the successive acceptations ruled by equation 6.

3. Two academic examples

3.1. Fitting a Gaussian

In order to test the fit algorithm, a standard function such as a Gaussian

y(x) = a/
√
2πw exp

[
−(x− xc)

2/(2w2)
]
+ b (7)

was generated with the parameter set {a, w, xc} = {10.0, 1.0, 5.0} and being b fixed to zero. The
data were generated with a Normal distributed error associated with each point of 0.05 and
subsequently fitted by the presented algorithm using the same formula (with b = 0).

The calculated PDFs associated with each parameter Pi are shown in the top row of figure 2
together with the χ2 dependence on this parameter, calculated by varying only the parameter
Pi and leaving the others fixed, i. e., making a cut of the hypersurface χ2{a, w, xc}. As one may
expect, the minimum of χ2 coincides with the maximum probability of each parameter PDF.

The most probable parameter values – the ones where the PDF is maximal – coincide very
nicely with the original values as can be seen in the top row of figure 2. In the following,
the discussion will focus on the determination of the parameter errors. There are two ways to
determine the parameter errors: (i) the commonly used definition of the error as the value of
the parameter that increases χ2 by one unit (ΔP = |P (χ2

min
)−P (χ2

min
+1)|) and (ii) the width

of the Gaussian associated with the PDF (the width of the Gaussian at y = e−0.5 · ymax).
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The obtained PDFs can be well described by a Gaussian function in the present examples
(solid line in the PDFs shown in figure 2). This proves that in this simple case the minimum
of χ2{Pi} is quadratic in each parameter, and therefore the frequentist definitions of errors can
be used – the two measures of the parameter errors should coincide. The error is the defined in
such a way that Pi has a 68% probability to be within Pi − σPi

and Pi + σPi
(see [15]).

In figure 2 it can be seen that errors calculated from the PDFs are equal (for xc) or larger
(for a and w) than those calculated using the method of incrementing χ2. This discrepancy can
be explained by parameter correlations seen in the contour plots of the two-dimensional cuts
through the χ2(Pi, Pj) hypersurface shown in the bottom row of figure 2: from the symmetry
of the contours involving xc it can be concluded that xc is independent from both, a and w,
whereas these two parameters are correlated, causing the main axis of the contour ellipsoids to
be not parallel to the parameter axes. For the parameters a and w, the error calculated from
the PDF coincides with the limits of the contour χ2 = χ2

min
+ 1. The error calculated from χ2

coincides with the intersection of the contour with the x axis, thus underestimating its value.
Although this fact is well known in the frequentist approximation [15], to take correlations

between parameters into account would involve diagonalizing the covariant matrix. That is
scarcely done and in any case is useful only in simple cases as the one presented when errors are
symmetric, i. e., when χ2{Pi} is quadratic in Pi. The Bayesian approach takes in a natural way
any correlation between parameters into account, and can also treat non-Gaussian PDFs being
much more powerful than the frequentist approximation.

3.2. Fitting with Poisson statistics

The standard way of fitting data using the minimization of χ2 (as defined in equation 4) is no
longer valid when the number of counts is low. However, as we have seen, simply by redefining
χ2 using equation 5, we can perform the fits when the number of counts is arbitrarily low.

To test our algorithm we have generated a series of random numbers DK following a Poisson
distribution around different fixed values HK . We have then fitted these series of randomly
generated points using the usual definition of χ2, equation 4, therefore wrongly assuming that
the numbers were generated following a Gaussian PDF (see Fig. 1) and with the definition given
in equation 5, that is, correctly assuming that DK follows a Poisson PDF around HK .

In figure 3 we show the relative discrepancy between the fitted value and the value HK used to
generate the series of points using both methods as a function of the value HK on a logarithmic
scale. As expected, for HK greater than about 103 both methods yield the same result. On the
contrary for smaller values the discrepancy increases, reaching 30% for HK = 1.

It is therefore important to take into account that in the limit of low counts the usual
approximation between Poisson and Gaussian statistics should not be used. In figure 3 it is
displayed the fit of a Gaussian function (equation 7) with parameters {a, w, xc, b} = {20, 5, 1, 2}
each point DK being generated following a Poisson distribution. The fit using Poisson statistics
is closer to the generated function, i. e., unaffected by the error, as it can be seen in the figure
proving that the proposed algorithm is also useful to fit in the case of low count rates.

4. Conclusions

We have proposed a general Bayesian method to fit data and analyze results from the fit [12].
The classical frequentist approach makes some assumptions concerning the χ2 landscape: there is
only a minimum of χ2{Pi} able to describe data within its error, this minimum has a quadratic
dependence on the parameters, and the parameters are not correlated. The here proposed
method avoids such problems, sampling the parameter space only with the guide of probability
rules. This method has already been successfully used to analyze experiments coming from
diffraction experiments [16], quasielastic neutron scattering [17, 10, 8] and dielectric spectroscopy
[9]. We finally summarize the main advantages of the proposed method:
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Figure 3. (a) Discrepancy between the fits to a constant value HK set to 10i, i = 0, 1, . . . , 5
using a Gaussian (empty circles) and a Poisson statistic (full circles), being DK values generated
using a Poisson statistics. (b) Gaussian function generated assuming a low-count experiment
(circles), i. e., assuming a Poisson statistics for each point. The solid line is the generated
function unaffected by the error, and the dashed line the fitted function. Dotted line is the fit
assuming a normal distribution of errors.

The Bayesian method will not get stuck in local minima of the χ2 hypersurface during the fit
procedure if its barrier is smaller than the error associated with the experimental data set [16].

Parameters are obtained as PDFs and, because the whole parameter space is sampled,
correlations between parameters are taken into account. Moreover, a natural way to define
errors based on the PDF of parameters is obtained within this method [17, 10, 9].

The likelihood (which as we have seen is directly related to χ2) obtained by this method is
also a PDF hence revealing the whole complexity of the parameter landscape. Model selection is
then performed taking into account all parameter combinations compatible with the experiment
[8].
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