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Abstract. All-reflective interferometry based on nano-structured diffraction gratings offers
new possibilities for gravitational wave detection. We investigate an all-reflective Fabry-Perot
interferometer concept in 2nd order Littrow mount. The input-output relations for such a
resonator are derived treating the grating coupler by means of a scattering matrix formalism. A
low loss dielectric reflection grating has been designed and manufactured to test the properties
of such a grating cavity.

1. Introduction
Laser interferometric gravitational wave detectors employ partly transmissive mirrors as 50/50
beam splitters and couplers to cavities. To avoid thermal effects associated with laser power
absorption in transmitted mirror substrates all-reflective interferometer topologies can be
used [1]. All-reflective interferometers have the additional advantage that opaque materials with
potentially superior mechanical properties, e.g. silicon [2], can be used as mirror substrates.

Previously realized all-reflective cavity concepts require high 1st order diffraction efficiency
for high finesse cavities. Here we report on the investigation of an all-reflective cavity concept
based on low 1st order diffraction efficiency gratings that was successfully used to construct a
high finesse cavity.

The paper is organized as follows: after a short summary of the basic principles of grating
beam splitters and all-reflective interferometer concepts a theoretical description of a cavity
concept in 2nd order Littrow mount is given. The design and fabrication of the grating is
explained briefly followed by a comparison of the experimental cavity properties with theoretical
results.

2. Basic all-reflective interferometer concepts
Transmissive beam splitters are traditionally used to split and recombine optical beams in
interferometers. If transmission through optical substrates is unfavorable, reflection gratings
can serve as beam splitters. For a laser beam of wavelength λ incident onto a grating, the
output angle of the mth diffracted order is given by the grating equation

d(sin θm + sin θin) = mλ, (1)
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Figure 1. (a) grating in non Littrow configuration with two existing orders can be used as a
beam splitter for a Michelson interferometer; (b) linear grating Fabry-Perot interferometer in
1st order Littrow mount; (c) 2nd order Littrow mount.

where d is the grating period and θin is the angle of incidence. The number of existing diffraction
orders depends on the choice of d, λ and θin.

To obtain an analog to a transmissive beam splitter the parameters are chosen such that only
one additional diffraction order to the m = 0 order is present (see Fig. 1(a)). Michelson and
Sagnac interferometers can be formed when the grating is used in a non Littrow mount and the
power of an incoming beam is split equally into the two orders.

A linear Fabry-Perot interferometer with a coupler in 1st order Littrow mount (θin = θ1) is
formed when a mirror is placed to retro-reflect the 0th order to the grating (see Fig. 1(b)). The
finesse of such a cavity is limited by the 1st order diffraction efficiency of the grating. If a grating
is used in 2nd order Littrow mount and a mirror is used to retro-reflect the 1st order, the finesse
of the resulting linear Fabry-Perot cavity (see Fig. 1(c)) is only limited by the reflectance of the
grating for normal incidence. Since high reflectance values are unequally easier to achieve than
high diffraction efficiency values, 2nd order Littrow mounting is likely to be the more appropriate
concept for all-reflective coupling to high-finesse Fabry-Perot interferometers.

3. All-reflective Fabry-Perot cavity in 2nd order Littrow mount
Conventional transmitting beam splitters always couple one input beam to two output beams.
The input-output relations of a conventional two mirror Fabry-Perot interferometer follow
directly from the phase relation of the reflected and transmitted beams. If the length L of
the cavity is expressed as a tuning φ = ωL/c, where ω is the angular frequency of the light and
c is the speed of light, the amplitude reflectance rFP and transmittance tFP of a cavity can be
written as

rFP = [ρ0 − ρ1 exp(2iφ)]d , (2)
tFP = −τ0τ1 exp(−iφ)d , (3)

where ρ0,1 and τ0,1 denote the reflectance and transmittance of the two cavity mirrors
respectively, and we have introduced the resonance factor d = [1 − ρ0ρ1 exp(2iφ)]−1 .

In contrast to a transmissive beam splitter the 2nd order Littrow grating beam splitter couples
one input always to three outputs. For normal incidence it couples to the orders -1, 0, +1 and for
2nd order Littrow incidence θin = arcsin(λ/d) it couples to the orders 0, 1, 2. The corresponding
amplitude diffraction efficiencies are termed η1, ρ0, η1 and η0, η1, η2, respectively, as depicted in
Fig. 2. The -1st and 1st order for normal incidence have the same diffraction coefficient for a
symmetric grating structure. For loss-less gratings ρ2

0 + 2η2
1 = 1 and η2

0 + η2
1 + η2

2 = 1 hold.
Coupling to three instead of two output ports results in more complex phase relations which
lead to different cavity properties compared to a conventional cavity. The phase relations of
the three ports are described by means of a scattering matrix [3] formalism in which a complex
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Figure 2. 3-port reflection grating: (a) labelling of the input and output ports; (b) amplitudes
of reflection coefficients for normal incidence; (c) for 2nd order Littrow incidence; (d) grating
cavity in 2nd order Littrow mount and the amplitudes of back reflected light c1, intra-cavity
field c2, forward reflected light c3 and the transmitted light t.

valued 3 × 3 scattering matrix S represents the 3 port beam splitter. The 3 input ports are
represented by a vector a with components ai that are the complex amplitudes of the incoming
waves at the ith port. The outgoing amplitudes bi are represented by vector b. The input and
output ports are coupled via b = S × a . The grating matrix can be written as [4]

S3p =

⎛
⎝

η2 exp(iφ2) η1 exp(iφ1) η0 exp(iφ0)
η1 exp(iφ1) ρ0 exp(iφ0) η1 exp(iφ1)
η0 exp(iφ0) η1 exp(iφ1) η2 exp(iφ2)

⎞
⎠ , (4)

where φ0, φ1, φ2 is the phase shift for 0th, 1st, 2nd order diffraction respectively. For a loss less
grating S must be unitary and |Sij | = |Sji| holds for the matrix elements due to reciprocity of
the device. There is no unique solution for the phases φi since one can choose different reference
planes for the various input and output ports. If without loss of generality we assume that
specular reflection is associated with no phase change one gets

φ0 = 0 , (5)
φ1 = −(1/2) arccos[(η2

1 − 2η2
0)/(2ρ0η0)] , (6)

φ2 = arccos[−η2
1/(2η2η0)]. (7)

For a given normal incidence reflectivity ρ0 there are limits for η0 and η2, namely

η0,max
min

= η2,max
min

= (1 ± ρ0)/2. (8)

It should be noted that these limits are fundamental in the sense that a reflection grating can
only be designed and manufactured having diffraction efficiencies within these boundaries.

A cavity in 2nd order Littrow mount with an end mirror reflectivity ρ1, transmittance τ1 and
unity input in port one, as depicted in Fig. 2 is described by

⎛
⎝

c1

c2

c3

⎞
⎠ = S3p ×

⎛
⎝

1
ρ1c2 exp(2iφ)

0

⎞
⎠ , (9)

where c1 is the amplitude of the field reflected back to the laser, c2 the intra cavity field and c3

the field of the forward reflected port. Solving for the amplitudes yields

c1 = η2 exp(iφ2) + η2
1 exp[2i(φ1 + φ)]d, (10)

c2 = η1 exp(iφ1)d, (11)
c3 = η0 + η2

1 exp[2i(φ1 + φ)]d , (12)
t = iτ1c2 exp(iφ) (13)
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and t is the amplitude of the light transmitted through the cavity.
The only grating parameter that determines the finesse of such a grating cavity is ρ0. For

given values of ρ0 and η1 the intra cavity power |c2|2 and the transmitted power |t|2 do not
depend on η0 and η2. The power of the two reflection ports |c1|2 and |c3|2 however strongly
depend on the values of η0 and η2. It is therefore possible to tune the cavity properties of the
two reflecting ports by means of controlling the 0th and 2nd order diffraction efficiency in the
grating production process. Fig. 3 illustrates how the power reflectance |c1|2 out of the back

0

180
0.0028

0.3

0.6

0.89720

0.5

1

η
2
2

φ [°]

|c
1|2

0

180
0.0028

0.3

0.6

0.89720

5

η
2
2

φ [°]

|c
2|2

Figure 3. left: Power reflectance |c1|2 of cavity back reflecting port for a grating cavity with
end mirror reflectivity ρ1 = 1 and cavity coupling η2

1 = 0.1 for selected values of η2; right: power
inside the cavity |c2|2.

reflecting port varies as a function of η2 and the tuning φ of the cavity. For simplicity a cavity
with a perfect end mirror ρ1 = 1 is assumed. The coupling to the cavity is η2

1 = 0.1. For a
coupler with η2

2 = η2
2,max ≈ 0.8972, the cavity does not reflect any light back to the laser for

a tuning of φ = 0. This corresponds to an impedance matched cavity that transmits all the
light on resonance. For a coupler with η2

2 = η2
2,min ≈ 0.0028, the situation is reversed and all

the light is reflected back to the laser. For all other values of η2 the back-reflected power has
intermediate values and as a significant difference to conventional cavities: the intensity as a
function of cavity-tuning is no longer symmetric to the φ = 0 axis.

4. Grating design and fabrication
The dielectric grating used as 3-port input coupler unite low diffraction efficiency and high
reflectivity in a single component. A common approach to produce dielectric high diffraction
efficiency grating is to etch a periodic structure in the top layer of a dielectric multilayer stack [5].
Here we used a different approach. We first etched the grating into a fused silica substrate
and then overcoated it such that the dielectric layers effectively form a volume grating as can
be seen in Fig. 4. A grating period of d = 1450 nm was used corresponding to a 2nd order
Littrow angle θin = λ/d ≈ 47.2◦ for the Nd:YAG laser wavelength of λ = 1064 nm used. A
shallow binary structure with a depth of 40-50 nm, a ridge width of 840 nm was generated by
electron beam lithography and reactive ion beam etching on top of a fused silica substrate. The
applied multilayer stack was composed of 32 alternating layers of silica (SiO2) and tantalum
pentoxide (Ta2O5). We used a power meter to measure a diffraction efficiency of η2

1 = 0.58%
and η2

2 = 0.13% for 1064 nm light with a polarization plane parallel to the grating grooves and
perpendicular to the plane of incidence (s-polarization). The grating allowed for a construction
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Figure 4. Cross sections of overcoated binary gratings (SEM-images) with d = 1450 nm; left:
groove depth of 40− 50 nm; right: groove depth 150 nm. The rectangular pattern visible at the
bottom is washed out towards the top of the grating.

of a cavity with a finesse of 400 from which we could deduce the normal incidence reflectivity
ρ2
0 = 98.5 of the grating [6].

5. Experimental results
Fig. 5 shows the experimental setup for the all-reflective Fabry-Perot cavity. An end mirror with
ρ2
1 ≈ 0.99 and a radius of curvature of 1.5m mounted on a piezoelectric transducer (PZT) to

allow for cavity length control was placed parallel to the grating surface at a distance of 43 cm.
An s-polarized beam of 50 mW from a 1.2 W, 1064 nm diode pumped Nd:YAG laser was used.

Laser

Grating

PD1 Cylindrical

lenses
PZT

PD2Grating cavity

Figure 5. Experimental setup for the demonstrated grating Fabry-Perot cavity: PZT,
piezoelectric transducer; PD, photo diode.

Photo detector PD1 is used to monitor the back reflected light from the cavity and PD2 is used
to monitor the light transmitted through the cavity To match the eigenmode of the grating
cavity the incoming beam must have an elliptical beam profile which is generated by two pairs
of cylindrical lenses.

Fig. 6 shows measured PD signals normalized to unity as the cavity length is scanned. On
the left hand side a scan over one free spectral range of the cavity is shown. The right hand
side is a zoom around one resonance peak. For comparison the normalized theoretical curves
for |c1|2 and |t|2 are shown. The lower curve is the well known transmission peak of a Fabry
Perot cavity symmetric to the φ = 0 axis. The upper curve however is not symmetric to zero
tuning. To emphasize the asymmetry we have also plotted |c∗1|2 ≡ |c1(φ, η2,min)|2 which is the
reflected power if η2 had its minimal allowed value of η2,min. Note that the observed asymmetry
is not as pronounced as for the exemplary curves in Fig. 3 since η2 is relatively close to η2,min.
The theoretical curves agree well with the experimental data which confirms the input-output
relations of the grating cavity in 2nd order Littrow mount.
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Figure 6. Normalized Measured power at PD1 and PD2 and corresponding theoretical curves.

6. Conclusion
The input-output relations of an all-reflective cavity concept that relies on low diffraction
efficiency gratings only have been derived. A first test using a shallow dielectric grating with
a groove depth of 40-50 nm experimentally confirms these relations. For a complete test we
will design and manufacture several gratings with constant η1 but different values for η2 and η0

thereby tuning the properties of the two reflected ports.
Additionally we will dedicate more research to the design and manufacturing of all-reflective

cavity couplers for 1st order Littrow mount and 50/50 beam splitters. The reduction of the
overall optical loss of the gratings due to transmission and scattering [7] and a precise control
of the diffraction efficiency of the various diffraction orders are our main goals since they
are two requirements for using diffractive optics in future generations of gravitational wave
detectors. Moreover we will investigate new grating interferometer topologies as well as practical
implementation issues.
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