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Abstract. Complex microstructures in materials often involve multi-scale heterogeneous
textures, modelled by random sets derived from Mathematical Morphology. Starting from 2D or
3D images, a complete morphological characterization by image analysis is performed, and used
for the identification of a model of random structure. From morphological models, simulations
of realistic microstructures are introduced in a numerical solver to compute appropriate fields
(electric, elastic stress or strain, . . . ) and to estimate the effective properties by numerical
homogenization, accounting for scale dependent statistical fluctuations of the fields. Our
approach is illustrated by various examples of multi-scale models: Boolean random sets based
on Cox point processes and various random grains (spheres, cylinders), showing a very low
percolation threshold, and therefore a high conductivity or high elastic moduli for a low volume
fraction of a second phase. Multiscale Cox point processes are also a source of instructive models
of fracture statistics, such as multiscale weakest link models.

1. Introduction

In the context of many materials, such as nanocomposites, it is common to encounter a non-
homogeneous dispersion of a charge in a matrix [1]. For instance arrangement of aggregates
(like carbon black) appear at different scales. This multiscale arrangement has implications on
the prediction of the effective properties of such composites (like the conductivity, the dielectric
permittivity or the elastic moduli), from the properties of the two components (charge and
matrix), and their spatial distribution. Similarly, in the context of fracture statistics, crack
initiation can occur on random defects with a mulstiscale distribution.

In this paper, we introduce a general methodology for modelling these situations [2]. It is
based on the theory of random sets [3, 4, 5, 6]. The morphology is summarized and simulated
by multi-scale random models accounting for the heterogeneous distribution of aggregates.
Identification of the model is made from image analysis.

In the next sections, we develop the following points:

• Principle of random structure modeling

• Models of multi scale random sets, simulation of microstructures, and percolation

• Prediction of effective properties by numerical simulations

• Multi-scale and multi-criteria Fracture Statistics models
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2. Principle of random structure modeling

The heterogeneity of materials can be handled through a probabilistic approach, which enables
us to generate models and simulation of the microstructures.

When considering two-phase materials (for instance a set of particles A embedded in a matrix
Ac), we use a model of random closed set (RACS) A [3, 4, 5, 6], fully characterized from a
probabilistic point of view by its Choquet capacity T (K) defined on the compact sets K, from
(1) below, where P denotes a probability:

T (K) = P (K ∩ A 6= ∅) = 1 − Q(K) = 1 − P (K ⊂ Ac). (1)

In practice, T (K) can be estimated by area fraction measurements on 2D images, or from
volume fraction estimation on 3D images (from true microstructures, or from simulations), after
a morphological dilation of the set A by the set K [3, 4, 5, 6], noted A ⊕ K, or calculated for a
given theoretical model. Equation (1) is used for the identification of a model (estimation of its
parameters, and test of its validity). Particular cases of morphological properties deduced from
(1) are the volume fraction Vv, the covariance (a useful tool to detect the presence of scales or
anisotropies), the distribution of distances of a point in Ac to the boundary of A. The access to
3D images of microstructures by means of X-ray microtomography [7] makes it possible to use
3D compact sets K (like balls B(r) with various radii r) to characterize the random set.

3. One scale models

The archetype of random structure model is a random point process. It represents the most
simple kind of random structure, like small defects isolated in a matrix. As a particular case
of RACS, a random point process is characterized by its Choquet capacity T (K). For a locally
finite point process, use can be made of the probability generating function GK(s) of the random
variable N(K) (random number of points of the process contained in K). We have

GK(s) = E{sn} =

∞
∑

0

Pn(K)sn,

where Pn(K) = P{N(K) = n}, P being a probability. From this definition, we have
1 − T (K) = GK(0) = P{N(K) = 0}. For example, a typical model is the Poisson point
process. It is the prototype of random point process without any order, since the numbers of
points of the process contained in any pair of sets without intersection are independent random
variables. For the homogeneous Poisson point process with intensity θ (i.e. average number of
points per unit volume in 3D), we have, µ(K) being the Lebesgue measure (volume in 3D) of
the compact set K:

Pn(K) =
(θµ(K))n

n!
exp (−θµ(K)) and GK(s) = exp (θµ(K)(s − 1))

Starting from a point process, more general models, called grain models, can be generated,
like the Boolean model, multi-scale models from intersection of random sets, or the multi-scale
Cox Boolean model.

3.1. Boolean model

Some materials (like porous media or composite materials) can be simulated by means of a
basic random set model, namely by distributions of overlapping objects. A random set model,
the Boolean model, was proposed by G. Matheron [3, 4] to reproduce this situation. First,
we consider a location of centres of grains by means of a Poisson point process with intensity
θ. In this condition, a volume V contains a random number of centres N following a Poisson
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distribution with average value θV . Then a random set is obtained by the union of random grains
(any compact set). For this model, the Choquet capacity is given by (2), where V (A′ ⊕ Ǩ) is
the average volume of the random primary grain A′, dilated by K:

T (K) = 1 − exp−θV (A′ ⊕ Ǩ) (2)

As a particular case, the volume fraction VV of the grains, is given by (3):

q = 1 − VV = 1 − exp−θV (A′). (3)

Using for K a pair of points, 3 points, or a ball with radius r gives access to the covariance,
the third order moment, and to the spherical contact distribution (namely the distribution of
the distance of a random point in Ac to the boundary of A). For a given population of random
grains, these morphological functions are theoretically available from (2). In the special case
of spherical grains, the distribution function of the spheres radii can be estimated from the
covariance [8], and therefore the model can be identified from the two points statistics, which
is a one-dimensional information. For more general situations, the population of grains requires
higher order moments for the identification of the model.

3.2. Percolation of the Boolean model

For materials made of components with a high contrast of properties, like for instance carbon
black in a polymeric matrix, there is a strong effect on the macroscopic properties when a given
phase percolates through the structure, inducing connected paths in the samples of the medium.
Analytical estimations of the percolation of Boolean models of cylinders are available with
the excluded volume model [9]. More recent analytical estimates of the percolation threshold
of isotropic Boolean models with convex grains are based on the zeroes of the connectivity
number [8, 10, 11]. They give an estimate of the percolation threshold of the grains p1

c and
of Ac . These two percolation thresholds are different, as a result of the fact that the two
sets A and Ac are non-symmetrical. The percolation threshold can also be estimated on
simulations of the microstructure. It appears that a Boolean model with anisotropic primary
grains (for instance sphero-cylinders) shows a much lower percolation threshold (0.01145 for
an aspect ratio l/r = 100 [9]) than for isotropic grains (0.2895 for spheres [12, 13]. This can
explain the expected outstanding mechanical, electrical or chemical properties of composites
containing carbon nanotubes, mainly due to their shape, giving a low percolation threshold.
The percolation of the complementary set of a Boolean model of spheres obtained analytically
from the connectivity number and by simulations are given by 0.05698 and 0.0540 ± 0.005
respectively [14].

4. Models of multi-scale random sets, simulation of microstructures, and

percolation

4.1. Combination of independent random sets to generate multi-scale random media

Starting from the basic models, more complex structures, such as superposition of scales, or
fluctuations of the local volume fraction p of one phase can be generated in a simple way
by a combination of various random sets, considering independent realizations. A convenient
construction of multi-scale models makes use of the union or intersection of independent random
sets Ai with different scales. In the case of intersections, A = ∩iAi, and it is easy to show that
we have:

P (K) = P{K ⊂ (∩iAi)} = ΠiP{K ⊂ Ai}. (4)

The result (4) is exact without any approximation, whatever the independent random sets Ai

and their scales. For instance the overall volume fraction is the product of the volume fractions
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of the Ai. Similarly the binary covariance C(h) = P{x ∈ A, x + h ∈ A}, and more generally
the n points probabilities are obtained as a product of the corresponding individual n points
probabilities. A lower bound of the corresponding percolation threshold pc can be estimated by
the products of percolation thresholds pi

c when the scales are widely separated: pc ≃ Πip
i
c. This

model was used to simulate the random distribution of carbon black in composites by means of
the intersection of three Boolean models of spheres at different scales, reproducing the carbon
black particles, aggregates, and zones of exclusion in the matrix [15]. The identification of the
model is made from the measurement of the overall binary covariance on C(h) images obtained
by transmission electron microscope on thin sections of the material.

4.2. The multi-scale Cox Boolean model

In another way to account for a non homogeneous distribution of random grains, it is possible
to replace the Poisson point process by a Cox point process [16]. Consider a positive random
function (RF) giving a non homogenous intensity θ(x). For any realization of this RF, a Poisson
point process with intensity θ(x) is generated. For any realization, the number of points in a
domain D follows a Poisson distribution with average θ(D) =

∫

D
θ(dx):

Pn(D) = P{N(D) = n} =
θ(D)n

n!
exp(−θ(D)).

Furthermore, for each realization, the number of points falling in any family of domains
without any intersection are independent random variables. This is not anymore the case when
considering the ensemble of realizations of the random intensity.

If ϕK(λ) is the Laplace transform of the positive random variable EA′{θ(A′ ⊕ Ǩ)}, where
EA′ states for the mathematical expectation with respect to the random set A′, and Eθ the
mathematical expectation with respect to the random function θ(x), we have:

T (K) = 1 − Eθ{exp(−EA′{θ(Ǎ′ ⊕ K)})} = 1 − ϕK(1). (5)

An interesting particular case is obtained by means of a constant intensity θ inside a first random
set A. For instance A is a Boolean model of spheres with a large radius R. We then keep the
points of a Poisson point process contained in A, as germs for centers of spheres with a smaller
radius r [12]. The random measure becomes θ(dx) = θ1A(x)dx, where 1A(x) is the indicator
function of the set A (1A(x) = 1 if x ∈ A and 1A(x) = 0 if x ∈ Ac). We have

T (K) = 1 − ΦK(θ), (6)

where ΦK(λ) is the Laplace transform of the random variable EA′{V ((Ǎ′⊕K)∩A)} obtained on
the realizations of the random set A, after averaging over the realizations of the primary grain
A′. As a particular case for a deterministic grain A′ the Choquet capacity of the Boolean Cox
model is deduced from the distribution of the change of support of the set A over the compact
set Ǎ′⊕K (or probability law of V ((Ǎ′⊕K)∩A)). It is usually difficult to access to this law for
any random set A, but it can be easily estimated from simulations. We can therefore estimate
the theoretical covariance (or higher order moments) of the model.

In the case of a large separation of scales between the two sets A and A′ we can obtain an
approximation of the T (K) and then of P (K) when assuming that V (Ǎ′ ⊕ K) → 0. Therefore,
the covariance and the three points probability are asymptotically equal to the corresponding
theoretical values (4) given for the intersection of independent random sets. This result is
valid for any n points probability, giving an approximation of the corresponding moments for
this Cox Boolean model. It can be obtained as follows, to first order in V ((Ǎ′ ⊕ K), writing
P1(K) = P{K ⊂ A}, Q1(K) = P{K ⊂ Ac} :

ΦK(λ) ≃ P1(Ǎ
′ ⊕ K) exp

(

−λV (Ǎ′ ⊕ K)
)

+ Q1(Ǎ
′ ⊕ K))
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and therefore, noting A2 the standard Boolean model made of the union of grains A′ located on
Poisson points with intensity θ, P2(K) = P{K ⊂ A2}, Q2(K) = P{K ⊂ Ac

2}

Q(K) ≃ P1(Ǎ
′ ⊕ K) exp

(

−θV (Ǎ′ ⊕ K)
)

+ 1 − P1(Ǎ
′ ⊕ K)

P (K) ≃ 1 − Q(K) ≃ P1(Ǎ
′ ⊕ K)(1 − Q2(K)) ≃ P1(Ǎ

′ ⊕ K)P2(K)

≃ P1(K)P2(K)

For thin sections in electron microscopy, we can notice that the available experimental
information is a projection of the set A through the thickness e, and therefore we can estimate
T (K⊕e), from which the model can be identified, after replacing the primary grain A′ by A′⊕e.

For carbon black nanocomposites, it is usual to model the distribution of carbon black
particles by means of a three scale model [15, 12, 1]: spherical carbon particles (with a possible
distribution of radii f1(r)) are located on Poisson points inside inclusion zones (Boolean model
of spheres with a distribution of radii f2(r)) and outside of exclusion zones (Boolean model
of spheres with a distribution of radii f3(r)). The identification of the parameters of the
model is made by means of an iterative optimization process, minimizing the difference between
probabilistic properties of simulations and of images of the material: in [1], the multi-scale
model is identified from measurements of the covariance, the third order moment, and of the
area fraction after 2D closings on transmission electron images.

4.3. Percolation of the Cox Boolean model

As expected, the generation of aggregates produces random media with a lower percolation
threshold: for a large separation of scales in a two scales model, the lower bound of the overall
percolation threshold pc is given by the product p1

cp
2
c of the corresponding thresholds, as in the

case of the intersection of independent random sets. Models involving iteration of scales generate
microstructure with a very low percolating threshold, and therefore with improved macroscopic
properties when the percolating component presents the higher property (e.g. conductivity or
elastic moduli). It shows that a typical homogeneous distribution of grains in space (like for the
standard Boolean model) does not produce a medium with optimal properties. The percolation
threshold of various multi-scale models was estimated in various situations [12, 17, 14] . In
[14], we get pc = 0.0849 for a scale factor equal to 30 in a two scale Cox Boolean model of
spheres, close to 0.28972 = 0.0839. In [17] the percolation threshold of sphero-cylinders (aspect
ratio l/r = 100) with centres located in a primary Boolean model of spheres (with Vv = 0.32)
percolates for pc = 0.0056. Again, considering the case of aggregates of carbon nanotubes, high
performances are expected from such a microstructure for a very low volume fraction of charge,
due to the presence of clusters.

5. Prediction of effective properties by numerical simulations

An efficient way to solve the problem of homogenization of physical properties, for instance
to predict the dielectric permittivity or the effective mechanical properties of heterogeneous
media, makes use of numerical solutions of the corresponding partial differential equations (PDE)
solutions, before estimating the effective properties by spatial averaging of the solution. This
requires the input of 3D images (real images, as obtained by confocal microscopy, or by X-ray
microtomography) or simulations, so-called digital materials. In a second step a computational
code (Finite Elements, Fast Fourier Transform, PDE numerical solver) is implemented.

We use a method derived from [18, 19], to estimate the equivalent macroscopic dielectric
constant ε∗ from the structure of a material and the properties of its constituents [20]. The
numerical solution is obtained by means of the Green function of a homogeneous reference
medium for the corresponding PDE for the electrical field or for the elastic field problem. For
this, we determine the polarization field P (x) inside the material knowing the local dielectric
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permittivity ε(x), by application of a constant electric field E0, and of periodic boundary
conditions. An iterative calculation in the Fourier space is used to estimate P (x), giving ε∗

by means of a spatial average <>. We have

ε∗ =
< D >

< E >
=

< (ε(x) − ε0)
−1ε(x)P (x) >

< (ε(x) − ε0)−1P (x) >
(7)

ε0 being the dielectric permittivity of a reference medium used for the iterative solution, and D
the electric displacement (D(x) = ε(x)E(x)).

Using the FFT approach is very versatile and does not require any meshing of the
microstructure, in contrast with other numerical methods such as Finite Elements. In elasticity,
stress and strain field maps are obtained on the scale of microstructure, to get a detailed study of
the effect of the microstructure on the local fields. With the Morph-Hom code developed by F.
Willot [21, 22] images of large sizes (up to 15003) can be handled for any contrast of properties,
and therefore the electrostatic or elastic behavior of porous media or of rigid media could be
successfully studied by numerical techniques. This was applied to the Boolean model of spheres
with any volume fractions [21] and to two-scales and three-scales Cox Boolean models of spheres
[22]. The reinforcing effect of the iteration of scales with a large separation is clearly observed
in the case of a very high conductivity or of a rigid phase, as a result of a lower percolation
threshold. In the case of porous media, the reverse effect is observed, as would appear in the
case of a damage at the interface between clusters of rigid particles and the matrix. A similar
approach was applied to a microtomographic image of a mortar material [23]. A detailed study
of the local enhancement of the stress field by the microstructure was made by means of image
analysis of the maps obtained by FFT. This is a promising approach to study the sensitivity of
microstructural elements on damage.

Finally, when working on images of a material or on realizations of a random medium, a
natural question arises [24, 25]: what is the representativeness of the effective property estimated
on a bounded domain of a microstructure? In other words, what is the size of a so-called
”Representative Volume Element” RVE. We address this problem by means of a probabilistic
approach giving size-dependent intervals of confidence, initially developed in the framework of
the homogenization of the elastic moduli of random media [26], and based on the size effect of
the variance of the effective properties of simulations of random media.

6. Multi-scale and multi-criteria Fracture Statistics models

Fracture Statistics models are necessary in order to predict the probability of fracture according
to the microstructure, the size of specimens and the applied stress field. These models are of
major importance for engineering purpose.

In a medium with heterogeneities at different scales, several populations of defects may exist
in various sub-volumes Vi inside a domain with volume V (with V =

∑i=r
i=1 Vi).

We propose for this type of situation theoretical models based on the weakest link model.
After a recall of the weakest link model, connected to the Poisson points process, we introduce
multi-criteria and multi-scale weakest link models. This is illustrated by some continuum models.

6.1. Recall of the weakest link model

The standard weakest link model is based on the assumption that fracture in a brittle material
is initiated on the most critical defect, that controls the full fracture process. For this model, it
means that when there is at least one point x in a specimen where the applied principal stress
component σ(x) is larger than the local critical stress σc(x), the specimen is broken. Usually it
is assumed that the occurrence or absence of critical defects (generating fracture) of any volume
elements generate a set of independent events. After a decomposition of the volume V into
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links vi and assuming that there is a fracture of the volume V when a single link vi is broken, a
classical computation for independent events gives:

P{Non fracture} =
∏

i

P{Non fracture of vi}

For vi → 0

P{Non fracture of V } = exp(−

∫

V

Φ(σ(x))dx) = exp(−V Φ(σeq))

where the equivalent stress is defined from

Φ(σeq) =
1

V

∫

V

Φ((σ(x))dx

This assumption is equivalent to a distribution of point defects in a matrix with σc = ∞,
according to a Poisson point process in space, with intensity Φ(σ), where Φ(σ) is the average
number per unit volume of defects with a critical stress σc lower than σ. For the Weibull model,
the function Φ(σ) is power law in σ.

For a homogeneous applied stress field σ(x) = σ,

P{Non fracture of V } = exp(−V Φ(σ))

6.2. Multi-criteria and multi-scale weakest link model

We consider now r populations of defects and a decomposition of the specimen V in various
sub-volumes Vi : V = ∪i=r

i=1Vi, with V =
∑i=r

i=1 Vi. Every sub-volume Vi contains a sub-class
of Poisson defects with intensity Φi(σ). In what follows, no specific assumption on the type of
Φi(σ) is made (it should increase monotonously with the loading [27, 24]), and therefore possible
mixing of various kinds of point defects are considered, like Weibull models for power laws, with
different moduli. The sub-volumes generate a family of random variables summing to V , with
a multivariate Laplace transform φ(λ1, λ2, ...., λr):

φ(λ1, λ2, ...., λr) = E{exp(−
i=r
∑

i=1

λiVi)}

.
Applying the weakest link assumption to each sub-volume, the fracture probability of volume

V is given by:

• For fixed volumes Vi, in the case of a homogeneous applied stress:

1 − P{fracture} = exp(−
i=r
∑

i=1

ViΦi(σ)) (8)

• Taking the mathematical expectation of expression (8) with respect to Vi, we obtain the
fracture probability:

1 − P{fracture} = φ(Φ1(σ),Φ2(σ), ....,Φr(σ)) (9)

For a non homogeneous applied stress field σ(x), equation (8) becomes, when the Vi are
given:

1 − P{fracture} = exp(−
i=r
∑

i=1

ViΦi(σ
i
eq(Vi))) (10)
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noting

ViΦi(σ
i
eq(Vi)) =

∫

Vi

Φi(σ(x))dx (11)

Taking the mathematical expectation with respect to the random variables ViΦi(σ
i
eq(Vi)), the

fracture probability is expressed by means of the Laplace transform of these variables, noted:

φH(λ1, λ2, ...., λr) = E{exp(−
i=r
∑

i=1

λiViΦi(σ
i
eq(Vi)))}

1 − P{fracture} = φH(1, 1, ...., 1) (12)

For very large samples, compared to the microstructure, modelled by a stationary multi-
component random set, with components Ai, every Φi(σ

i
eq(Vi)) can be replaced by

Φi(σ
i
eq) =

1

V

∫

V

Φi(σ(x))dx,

after substitution of the average in a random Vi by the overall average in the total volume
V . With this approximation, the fracture probability is given by (9), replacing each Φi(σ) by
Φi(σ

i
eq):

1 − P{fracture} = φ(Φ1(σ
1
eq),Φ2(σ

2
eq), ....,Φr(σ

r
eq)) (13)

6.3. Continuous model with two modes of fracture

We consider a random set A (and its complementary set Ac), with p = P{x ∈ A}. We assume
that the random set A contains Poisson point defects with intensity Φ1(σ), and Ac contains
Poisson point defects with intensity Φ2(σ). The probability of fracture can be deduced from the
bivariate distribution of the random volumes V1 and V2 (with V1 + V2 = V ) of A and Ac in the
domain with volume V .

This bivariate distribution is not known in general, but can be assumed to be deduced from
the Beta distribution. Let X be the random variable giving the proportion of A in a sample.
The pdf f(x) of the random variable X (0 ≤ X ≤ 1) is assumed to follow a Beta distribution,
with parameters α and β as for a Poisson sequence generated on a line in a 1D process:

f(x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1 (14)

The average and the variance of this distribution are given by:

E(X) =
α

α + β

V ar(X) =
αβ

(α + β)2(α + β + 1)

For a random set A with volume fraction p and with centred covariance W 2(h), we have

E(X) = p (15)

V ar(X) =
1

V 2

∫

V

∫

V

W 2(x − y) dxdy
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For large volumes, when V ≫ An (An being the integral range deduced from the integral of
the covariance), the variance becomes

V ar(X) = p(1 − p)
An

V
(16)

The parameters α and β are expressed as a function of p and of V ar(X) or of An for large
specimens, that are microstructural properties. We have:

α

α + β
= p

αβ

(α + β)2(α + β + 1)
=

α

α + β

β

α + β

An

V

and

α = p(
V

An
− 1)

β = (1 − p)(
V

An
− 1)

The Laplace transform of the bivariate distribution of variables XV and (1−X)V is defined
by:

φ(λ1, λ2) = E {exp (−λ1V X − λ2V (1 − X))} (17)

= exp(−λ2V )E {exp (−V X(λ1 − λ2))}

= φ((λ1 − λ2)V ) exp(−λ2V )

where φ(λ) is the Laplace transform of the Beta distribution (14). We have:

φ(λ) =
Γ(α + β)

Γ(α)

k=∞
∑

k=0

(−1)kλk

k!

Γ(α + k)

Γ(α + β + k)
(18)

and

Γ(α + β)

Γ(α)

Γ(α + k)

Γ(α + β + k)
=

(α + k − 1)...(α + 1)a

(α + β + k − 1)....(α + β)
(19)

=
(p( V

An
− 1) + k − 1)...p( V

An
− 1)

( V
An

− 1 + k − 1)...( V
An

− 1)

The probability of fracture is obtained by replacing (19) in (17, 18). Replacing the term V by
V (Ǎ′⊕K) in 19, we obtain an estimation of the Choquet capacity of a Cox Boolean random set
from equation (6), when the random variable V ((Ǎ′⊕K)∩A) introduced in section 4.2 follows
a Beta distribution. This can occur for sets Ǎ′⊕K that cannot be considered as negligible with
respect to A, while a large separation of scales was considered previously.

For very large samples (V → ∞), the term in (19) becomes pk and φ(λ) = exp(−pλ). Then,

φ(λ1, λ2) = exp(−λ2V ) exp−pV (λ1 − λ2) = φ(λ1, λ2) = exp−V (pλ1 + (1 − p)λ2)

and the fracture probability is given by:

1 − P{rupture} = exp−V (pΦ1(σ) + (1 − p)Φ2(σ))
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6.4. Multi-scale weakest link model

We can specialize the previous results to a single population of defects Φ(σ) = Φ1(σ), using
Φ2(σ) = 0 in the previous developments. This corresponds to a multi-scale model, where the
defects are located in a random set A. We have, using the Laplace transform of the Beta
distribution φ(λ) and equation (17):

1 − P{fracture} = φ(Φ(σ)V )

For very large samples (V → ∞),the term in (19) becomes pk and φ(λ) = exp(−pλ). Then
1 − P{fracture} = exp−V (pΦ(σ)). Therefore, very large scale effects of this model are similar
to the standard model, but different scale effects are obtained at a very small scale and at
intermediary scales.

As in [27], this approach can be generalized to fracture controlled by a critical density of
defects. The fracture probability is then worked out from the probability P{N defects = k}
available for the multi-scale models, from its generator function GV (s) = E{sN}:

GV (s) = φ((s − 1)Φ(σ)V ) (20)

The probability to find k critical defects in a domain with volume V is deduced from (20)
by use of the appropriate Laplace transform φ (for instance the Laplace transform of the Beta
distribution).

6.5. Continuous model with r modes of fracture

The previous model can be generalized to the case of r modes of fracture, the Beta distribution
being replaced by a multivariate Dirichlet distribution with parameters α1, α2,...., αr. We have

f(x1, x2, ..., xr) =
Γ(α0)

Πi=r
i=1Γ(αi)

Πi=r
i=1x

αi−1
i

with α0 =
∑i=r

i=1 αi and xr = 1 −
∑i=r−1

i=1 xi.
Each random variable Xi follows a Beta distribution with parameters αi and α0 − αi, with

average E( Xi) = αi

α0
and variance V ar(Xi) = αi(α0−αi)

(α0)2(α0+1)
. For illustration we consider a random

mosaic built on a random tesselation of space, by affecting independently to each class (or
cell) the mode of fracture i with the probability pi. On a large scale for a random mosaic,
V ar(Xi) = pi(1 − pi)

An

V
(the Dirichlet distribution implies that the integral range An does not

depend on the mode i).
For this model we have α0 = 1 − V

An
and αi = pi(1 − V

An
).

The expansion of the multivariate Laplace transform φ(λ1, λ2, ...., λr) depends on the
moments µk1....kr

:

µk1....kr
= E

{

Πj=r
j=1X

kj
j

}

=
Γ(

∑i=r
i=1 αi)

Πi=r
i=1Γ(αi)

Πi=r
i=1

Γ(αi + ki)

Γ(
∑i=r

i=1(αi + ki))

The Laplace transform of the Dirichlet distribution is obtained from:

φ(λ1, λ2, ...., λr) =
n=∞
∑

n=0

(−1)n

n!





∑

k1+...+kr=n

λk1

1 ...λkr

r µk1....kr



 (21)

The fracture probability is given by replacing in (21) the λi by V Φi(σ). In practice, the expansion
can be stopped after a finite rank n.
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7. Conclusion

Multi-scale models of random media provide a wide variety of morphologies to simulate complex
microstructures for application to real materials. These models are able to capture phenomena
like the observation of very low percolation thresholds, explaining the enhancement of some
effective properties for a low volume fraction of additions in a matrix. Our approach is based on
measurements obtained by image analysis, to test and select appropriate models, and to estimate
their parameters. Combined to predictive models, by analytical means, or more generally by
numerical simulations, the multi-scale models give access to the optimization of microstructures
with respect to the required properties. They are also the source of new fracture statistics
behavior in multi-scale distributions of defects, that would be helpful for the explanation of the
observed behavior of very heterogeneous materials [28]. This approach can be used in many
domains of application, like materials, nanocomposites, porous media, or biological media.
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