
Journal of Physics: Conference
Series

     

OPEN ACCESS

Bayesian uncertainty quantification applied to
RANS turbulence models
To cite this article: Todd A Oliver and Robert D Moser 2011 J. Phys.: Conf. Ser. 318 042032

 

View the article online for updates and enhancements.

You may also like
Bayesian uncertainty analysis compared
with the application of the GUM and its
supplements
Clemens Elster

-

Spatial averaging of velocity
measurements in wall-bounded
turbulence: single hot-wires
Jimmy Philip, Nicholas Hutchins, Jason P
Monty et al.

-

Method to minimize polymer degradation
in drag-reduced non-Newtonian turbulent
boundary layers
Lucia Baker, Yiming Qiao, Sina Ghaemi et
al.

-

This content was downloaded from IP address 18.117.216.229 on 28/04/2024 at 01:57

https://doi.org/10.1088/1742-6596/318/4/042032
https://iopscience.iop.org/article/10.1088/0026-1394/51/4/S159
https://iopscience.iop.org/article/10.1088/0026-1394/51/4/S159
https://iopscience.iop.org/article/10.1088/0026-1394/51/4/S159
https://iopscience.iop.org/article/10.1088/0957-0233/24/11/115301
https://iopscience.iop.org/article/10.1088/0957-0233/24/11/115301
https://iopscience.iop.org/article/10.1088/0957-0233/24/11/115301
https://iopscience.iop.org/article/10.1088/1361-6501/abff81
https://iopscience.iop.org/article/10.1088/1361-6501/abff81
https://iopscience.iop.org/article/10.1088/1361-6501/abff81
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsshyaisfOgJ4xwSOob_FMasvbzv_wIoRaqolAjdswV5_az4IVAy_gVOXK3PRKXCFxCU0ZLw61KkY7HBdfX54DkMtkD8DJp7gnhFFoV_iVcS1zevyEaeKQB2b6l3K-RxJQ43gPsDmbOeook0FtAtGgpkHbpiAC6xTb1s3aHfCm7IpuB4-A6eo-mCX2fgVhXxYmmpfMstVWQJFO7bxhu-sl8OgdC4pzsukpInbte2oIUNG2gIqKdLm3LB5xtjw9CqXMZr4RB2qjbpuYsIKVhMkq63HSt_5Lw-jBqq4IcRJEVswgJ5i2jVspTnkcTRJWl1hz0POU_eMhj3fRPPWPmPHOUwdGGzRg&sig=Cg0ArKJSzAc1dmQyBJcD&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Bayesian uncertainty quantification applied to RANS

turbulence models

Todd A Oliver and Robert D Moser
Center for Predictive Engineering and Computational Sciences
Institute for Computational Engineering and Sciences
The University of Texas at Austin
1 University Station, C0200, Austin, TX 78712, USA

E-mail: oliver@ices.utexas.edu

Abstract. A Bayesian uncertainty quantification approach is developed and applied to RANS
turbulence models of fully-developed channel flow. The approach aims to capture uncertainty
due to both uncertain parameters and model inadequacy. Parameter uncertainty is represented
by treating the parameters of the turbulence model as random variables. To capture model
uncertainty, four stochastic extensions of four eddy viscosity turbulence models are developed.
The sixteen coupled models are calibrated using DNS data according to Bayes’ theorem,
producing posterior probability density functions. In addition, the competing models are
compared in terms of two items: posterior plausibility and predictions of a quantity of interest.
The posterior plausibility indicates which model is preferred by the data according to Bayes’
theorem, while the predictions allow assessment of how strongly the model differences impact
the quantity of interest. Results for the channel flow case show that both the stochastic model
and the turbulence model affect the predicted quantity of interest. The posterior plausibility
favors an inhomogeneous stochastic model coupled with the Chien k-ε model. After calibration
with data at Reτ = 944 and Reτ = 2003, this model gives a prediction of the centerline velocity
at Reτ = 5000 with uncertainty of approximately ±4%.

1. Introduction

In many turbulent flows of technical interest, the cost of direct numerical simulation (DNS) and
large eddy simulation are prohibitive. In such cases, important design and operations decisions
are informed by numerical solutions of the Reynolds-averaged Navier-Stokes (RANS) equations
coupled with a closure model intended to represent the effects of turbulent fluctuations on
the mean flow. However, the effects of turbulence are difficult to model, and RANS closure
models are notoriously unreliable. Thus, it is important to quantify the uncertainty in RANS
simulations and the effects of that uncertainty on predictions of quantities of interest (QoIs).
This uncertainty quantification (UQ) process is the subject of this work.

Sources of uncertainty can be broadly divided into two classes: parameter and model.
Parameter uncertainty is uncertainty that appears because the true or “best” value of a
particular parameter—e.g., a closure constant in the turbulence model—is not well-known.
This type of uncertainty can be treated using sensitivity analysis, interval analysis or, more
generally, probabilistic analysis. In the latter, the uncertain parameters are treated as random
variables and the associated joint probability density function (PDF) is propagated through the
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model, leading to a PDF for the QoI. While turbulence model parameter uncertainty is widely
acknowledged and has occasionally been analyzed—see, e.g., (Platteeuw et al., 2008; Dunn et al.,
2011)—it is not standard practice in CFD analysis to attempt to quantify this uncertainty.

Model uncertainty is uncertainty that appears due model inadequacy. Model inadequacy
is the inherent inability of the model to reproduce reality, even for the “best” values of the
model parameters. In a prediction scenario—where experimental or high fidelity simulation
(e.g., DNS) data is not available—the effect of this inadequacy on the predictions of the QoIs
cannot be assessed directly via comparison with data. This fact leads to uncertainty regarding
the accuracy of the prediction. While it is generally recognized that all RANS turbulence
models suffer from inherent inadequacies that limit their fidelity, efforts to develop methods to
systematically quantify these uncertainties have begun only fairly recently (Cheung et al., 2011;
Emory et al., 2011; Dow & Wang, 2011).

In this work, a Bayesian probabilistic approach is used to quantify the uncertainty in
predictions of RANS turbulence models. Both parameter and model uncertainty are treated.
Specifically, the UQ approach involves stochastic model development, parameter calibration
against data, QoI prediction, and model comparison. The approach is applied to analyze the
uncertainty in mean velocity field predictions for incompressible, fully-developed channel flow.
The current work represents an extension of that described by Cheung et al. (2011), where the
Bayesian approach was applied to the calibration and validation of the Spalart-Allmaras (SA)
turbulence model for boundary layer flows. Two significant extensions are achieved. First,
additional turbulence models are considered, adding a dimension to the model comparison
problem. Second, more complex and realistic uncertainty representations are developed, leading
to improved uncertainty estimates in the predicted QoI.

The remainder of the paper is organized into four sections. The overall approach is
summarized in Section 2. The specific stochastic models and calibration data used for the
channel application are described in detail in Section 3, and representative results are shown in
Section 4. Section 5 provides conclusions.

2. Bayesian Uncertainty Quantification Overview

The Bayesian UQ approach is centered around the use of probability theory to represent one’s
knowledge and the use of Bayes’ theorem to update that knowledge to account for data (Jaynes,
2003; Tarantola, 2005). Thus, in contrast to typical RANS simulations where the output is a
deterministic prediction, the goal of this process is to provide a PDF for the prediction QoI.
To arrive at such a prediction using a typical deterministic turbulence model, three steps are
required: stochastic model construction, calibration, and finally prediction. In addition, when
multiple competing models (either different turbulence models or different stochastic extensions)
are available, the Bayesian framework provides a natural metric, known as the posterior model
plausibility, to compare the models in the light of the available data. These processes are briefly
described in Sections 2.1 through 2.4.

2.1. Stochastic Modeling
A stochastic extension of the deterministic model of interest is required to enable the model to
make stochastic predictions. The most basic stochastic extension of any deterministic model is
constructed by simply viewing the model parameters as random variables. This construction
captures parameter uncertainty but is unable to account for model uncertainty. In general, this
approach is not sufficient for eddy viscosity-based turbulence models, where model uncertainty
is expected to be significant.

Given that eddy viscosity-based models do not accurately represent the physics of the flow,
it makes sense to view their predictions not as precise predictions of the mean flow but rather

13th European Turbulence Conference (ETC13) IOP Publishing
Journal of Physics: Conference Series 318 (2011) 042032 doi:10.1088/1742-6596/318/4/042032

2



as information that can be used to construct a PDF over the space of possible mean flow fields.
For example, one could use the following form:

〈~u〉(~x, t; θ,α) = ~U(~x, t; θ) + ~ε(~x, t; α). (1)

In (1), ~U denotes the mean flow velocity given by the RANS model, which is a function of
spatial location ~x, time t, and turbulence model parameters θ; ~ε is a random vector field that
may depend on additional parameters α; and 〈~u〉 denotes the stochastic prediction of the true
mean velocity field. Here, ~ε represents uncertainty introduced by the RANS model inadequacy.
Of course, the actual mean velocity is not random. Thus, the fact that 〈~u〉 is random reflects
incomplete knowledge of the true mean velocity. To complete the model, one must precisely
define the random field ~ε. Section 3.2 gives a complete description of the stochastic models
developed in this work.

2.2. Calibration
Calibration is the process of extracting knowledge about model parameters from data. In the
current work, the goal of the calibration procedure is to inform both the turbulence model closure
constants, θ, and any additional parameters introduced by the stochastic model extension, α.

In the Bayesian framework, the model parameters are viewed as random variables. The
PDFs for these random variables represent the state of knowledge regarding their values. Thus,
the solution of the calibration problem is the conditional PDF for the parameters given the
calibration data. This conditional PDF is referred to as the posterior PDF and is obtained from
Bayes’ theorem as follows:

p(θ,α|d) = k p(θ,α)L(θ,α; d), (2)

where d denotes the data. Furthermore, in (2), p(θ,α) denotes the so-called prior PDF;
L(θ,α; d) denotes the likelihood function, and k is a normalization constant. The prior PDF
encodes knowledge of the parameter values that is independent of the data, and the likelihood
function quantifies the probability of the given data as a function of the parameter values. In
particular, the likelihood function is defined by

L(θ,α; d) ≡ p(d|θ,α), (3)

where p(d|θ,α) is the conditional PDF for the data given the parameters. For insight into the
likelihood function, note that

p(d|θ,α) =
∫
p(d|dt,θ,α)p(dt|θ,α)ddt,

where dt denotes the unknown true data (i.e., what would be observed if the measurement
process were perfect). The conditional PDF p(d|dt,θ,α) = p(d|dt) quantifies uncertainty in
the measurement or observation process used to obtain the data. This PDF is constructed
based on knowledge of the experiment or data set. The conditional PDF p(dt|θ,α) represents
the prediction of the true data, as given by the stochastic model discussed in Section 2.1.

2.3. Prediction
Although it is often computationally expensive, the prediction step is conceptually the simplest
of the four tasks that make up the UQ process. After calibration, the parameter posterior
PDFs are propagated through the stochastic model to compute the PDF for the QoI. The most
straightforward method to accomplish this propagation is basic Monte Carlo sampling, which is
used here.
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2.4. Model Comparison
The stochastic modeling, calibration, and prediction steps can be carried out using a single
physical model with a single stochastic extension. However, it is often the case that multiple
physical models of similar a priori fidelity are available. In this situation, it is unclear what
physical model should be used for prediction. Furthermore, it is generally unclear what stochastic
extension of a given physical model is most appropriate. Thus, in practice, one is confronted
with multiple models that could be used for the same prediction. In the Bayesian framework,
these competing models can be compared based on the posterior model plausibility.

The posterior plausibility quantifies the relative probability that a particular model in a given
set produced the observed data. In particular, given a set of models M = {M1, . . . ,MN}, the
posterior plausibility for model Mi is defined as (Jaynes, 2003; Beck & Yuen, 2004)

P (Mi|d,M) = C P (Mi|M)E(Mi; d,M) (4)

where P (Mi|M) is the prior model plausibility, E is the evidence, and C is a normalization
constant. Note that the evidence plays the role of the likelihood function in (2). Specifically, it
quantifies the probability of observing d given Mi. Thus,

E(Mi; d,M) ≡ p(d|Mi,M) =
∫
p(θ,α|Mi,M)p(d|θ,α,Mi,M)dθ dα, (5)

which is simply the normalization constant k from Bayes’ theorem (2) applied to model Mi.

3. Formulation Details

To exercise the framework described in Section 2, the approach is applied to the prediction of
the centerline velocity in a fully-developed, incompressible channel flow at Reτ = 5000. Four
turbulence models are coupled with four stochastic extensions to give sixteen total models that
are calibrated using DNS data at two lower Reynolds numbers, compared, and used to predict
the QoI. This section describes the models and the calibration data.

3.1. Turbulence Models
The RANS equations for incompressible, fully-developed channel flow are well-known (Durbin &
Petterson Reif, 2001) and are not repeated here. Four well-known turbulence models are used:
Baldwin-Lomax (Baldwin & Lomax, 1978), SA (Spalart & Allmaras, 1994), Chien k-ε (Chien,
1982), and v2-f (Durbin, 1995; Durbin & Petterson Reif, 2001). For brevity, full details of
the model equations are not given here. However, for completeness, differences between the
current implementation and the references are summarized and the turbulence model calibration
parameters are listed.

3.1.1. Baldwin-Lomax The Baldwin-Lomax (BL) model was originally formulated by Baldwin
& Lomax (1978). The form of the model used here is exactly as described by Wilcox (2006). The
calibration parameters are κ, A+, (αCcp), Cwk, and Ckleb. Note that α (the Clauser parameter)
and Ccp are typically viewed as two separate parameters. However, only the product appears in
the BL model. Thus, the product is treated as a single parameter in this work.

3.1.2. Spalart-Allmaras The SA model (Spalart & Allmaras, 1994) is slightly modified from its
original form to avoid undesirable behavior due to the fv2 closure function. This modification
is originally due to Allmaras (2007) and is fully documented by Oliver & Darmofal (2009). The
calibration parameters are cb1, cb2, σ, cv1, cw2, cw3, and κ.
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3.1.3. Chien k-ε The Chien (1982) model is implemented exactly as described by Wilcox
(2006). The calibration parameters are Cµ, Cε1, Cε2, σk, σε, Cf1, Cf2, Cfµ. The symbols Cf1,
Cf2, and Cfµ are not standard. These are closure constants appearing in the Chien closure
functions as follows:

νt = Cµ
k2

ε

[
1− exp

(
−Cfµy+

)]
, f = 1− Cf1 exp

(
Cf2

k2

νε

)
.

3.1.4. v2-f Two changes are made from the v2-f model as specified by Durbin & Petterson
Reif (2001). First, a change of variables is used to write the model in terms of ζ = v′2/k. Second,
the variation in Cε1 is neglected. Thus, the calibration parameters are Cµ, Cε1, Cε2, σε, CL, Cη,
CT , c1, and c2. The notation CT is not standard. Here, CT refers to the closure constant in the
time scale function (Durbin, 1991):

T = max
(
k

ε
, CT

√
ν

ε

)
.

3.2. Uncertainty Models
Four competing stochastic extensions of the eddy viscosity turbulence models are developed.
Each stochastic extension is appropriate for use with each turbulence model, leading to sixteen
total combinations. The first three stochastic extensions are developed in terms of the mean
velocity, which is both the observable used for the calibration and the QoI. While this approach
is sufficient here, it is not general enough for more complex cases. In particular, since the
full Reynolds stress tensor cannot be computed given only the mean velocity field, a mean
velocity uncertainty model is insufficient if the Reynolds stress is the calibration observable or
the prediction QoI. Thus, an additional model is constructed explicitly in terms of the Reynolds
shear stress.

3.2.1. Multiplicative Velocity Error Models Three stochastic model extensions based on the
assumption of a multiplicative error in the mean streamwise velocity are developed. All three
models take the following multiplicative form:

〈u〉+(η; θ,α) = (1 + ε(η; α))U+(η; θ), (6)

where η = y/h is the wall-normal coordinate non-dimensionalized by the channel half-height,
U+ = U/uτ is mean velocity non-dimensionalized by the friction velocity as given by RANS,
and 〈u〉+ is the stochastic prediction of the true non-dimensionalized mean velocity. The error
field, ε, is chosen to be a zero-mean Gaussian random field. Thus, to complete the model, it is
necessary to specify the covariance of ε. Three covariance structures are examined, leading to
three different stochastic models.

The first model assumes the data points are independent. Thus,

〈ε(η)ε(η′)〉 = σ2δ(η − η′), (7)

where δ is the Dirac delta distribution and σ is a calibration parameter. The assumption
of independent errors in the mean velocity is clearly unrealistic. Thus, models with spatial
correlation are necessary.

A very simple correlation can be introduced using the following homogeneous correlation
structure:

〈ε(η)ε(η′)〉 = σ2 exp
(
− 1

2
(η − η′)2

`2

)
, (8)
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where σ and the correlation length scale, `, are calibration parameters.
While it is expected that the velocity errors are correlated, a homogeneous correlation

structure, as given in (8), is very restrictive and seems unlikely to be correct. Given the known
structure of the channel flow, where the length scale is set by the viscous length near the wall
and the channel height far from the wall, it is reasonable to expect that this multiscale structure
will also appear in the error. To allow the correlation length to vary in space, the following
covariance is chosen (Rasmussen & Williams, 2006):

〈ε(η)ε(η′)〉 = σ2

(
2`(η)`(η′)

`2(η) + `2(η′)

)1/2

exp
(
− (η − η′)2

`2(η) + `2(η′)

)
, (9)

where σ is a calibration parameter and `(η) is a length scale function. Specifically,

`(η) =


`in for η < ηin
`in + `out−`in

ηout−ηin (η − ηin) for ηin ≤ η ≤ ηout
`out for η > ηout

, (10)

where `in = `+in/Reτ and ηin = η+
in/Reτ . The constants `+in, η+

in, `out and ηout are all calibration
parameters.

3.2.2. Additive Reynolds Stress Model The Reynolds stress uncertainty model takes the
following form:

〈u′v′〉+(η; θ,α) = T+(η; θ)− ε(η; α), (11)

where T+ is the Reynolds shear stress given by the RANS+turbulence model equations, ε is a
random field, and 〈u′v′〉+ is the stochastic prediction of the actual Reynolds shear stress.

Some clarifying remarks are necessary to understand the procedure. In particular, the
stochastic mean velocity is found by solving the mean momentum equation using 〈u′v′〉+:

− d

dη

(
1
Reτ

d〈u〉+

dη
− 〈u′v′〉+

)
= 1. (12)

Note that the turbulence model is only used to define the baseline Reynolds stress, T+, that
is used to construct the stochastic Reynolds stress model. That is, the Reynolds stress PDF
is only propagated through the mean momentum equation, which is not uncertain, and not
through the turbulence model, which is highly uncertain. This implies that solution realizations
are not required to satisfy the turbulence model. However, since it is the turbulence model that
introduces the error into the system, there is no reason to require that it be satisfied.

Of course, there are infinitely many possibilities for ε. To illustrate the method ε is taken to
be a zero-mean Gaussian random field with the following covariance:

〈ε(η)ε(η′)〉 = kin(η, η′) + kout(η, η′), (13)

where kin is intended to represent the near-wall error and kout models the error far from the
wall. The following choices are reasonable:

kin(η, η′) = σ2
in

(
1− (η − η′)2

`2in
− (η − η′)2

∆2
+
`2in
∆2

ηη′

∆2

)
exp

(
− 1

2
(η − η′)2

`2in
− 1

2
(η2 + η′2)

∆2

)
,

kout(η, η′) = σ2
out

(
1− (η − η′)2

`2out

)
exp

(
− 1

2
(η − η′)2

`2out

)
,

where `in = `+in/Reτ , ∆ = Cd`in, and σout = Cs/Reτ . The calibration parameters are σin, `+in,
Cd, Cs, and `out.

Given this ε one can analytically integrate (12) to find the random field model for the velocity.
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Table 1. Stochastic model extension labels.

Model Description Label Defining Equation
Independent, homogeneous IND 7
Correlated, homogeneous SE 8

Correlated, inhomogeneous VLSE 9
Additive Reynolds Stress ARSM 11, 13

3.2.3. Labels Table 1 presents shorthand that will be used to refer to the stochastic models.

3.3. Calibration Data
The calibration data is taken from the channel flow DNS of Jimenez and coworkers (Hoyas &
Jimenez, 2006; del Alamo et al., 2004). Specifically, mean velocity measurements at Reτ = 944
and Reτ = 2003 are used. As detailed in Section 2.2, the uncertainty in the data is incorporated
in the calibration problem via the likelihood formulation. When using DNS data, the dominate
uncertainty is due to the averaging process—i.e., the fact that the only a sample mean, not
the true mean, is computed. An estimate of this variance, computed by the method shown
by Hoyas & Jimenez (2008), is provided with the reported profile statistics. However, the
covariance between points in the profile is not estimated. Thus, to minimize the impact of
correlation, the profile data are downsampled such that the points are farther apart in space.
After this downsampling, the DNS data points are assumed to be independent with the variance
provided with the data.

4. Results

This section shows a representative subset of the results obtained using the Bayesian UQ
framework for the channel flow problem with the models described in Section 3. These results
were generated using the Advanced Multi-Level sampling algorithm (Cheung & Beck, 2009;
Cheung & Prudencio, 2011) implemented as part of the QUESO library (Prudencio & Schulz,
2011).

4.1. Calibration
For each of the sixteen models defined in Section 3, the result of the calibration problem is
the full joint posterior PDF defined by (2). Thus, for brevity, it is not possible to show all
calibration results here. To give the flavor of the output, two example posterior PDFs are
examined. Specifically, Figure 1 shows the marginal PDFs for the SA parameters κ and cv1 as
well as the Chien parameters σk and σε. Both results were obtained using the VLSE model. In
addition to the marginal posterior PDFs, the samples from the full joint posterior are projected
onto the plane to indicate correlation between the two parameters shown. It is clear that the
SA parameters (κ and cv1) have posterior maximizers near their nominal values (all parameters
are normalized such that 1.0 is the nominal value) and are very highly correlated. Alternatively,
the posterior maximizer for the Chien σk parameter is approximately 1.6 times larger than its
nominal value, indicating that larger than nominal values of σk are necessary to fit the calibration
data.

4.2. Model Comparison
Table 2 gives log(E), where E is defined in (5), for each of the sixteen models defined by coupling
a turbulence model with a stochastic extension. First, note that the VLSE and ARSM models
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Figure 1. Diagonal: Marginal prior (dashed) and posterior (solid) PDFs. Upper, right: Samples
projected onto plane. The parameters are normalized such that 1.0 indicates the standard value.

Table 2. log(E) value for each model.

BL SA Chien v2-f
IND 44.19 8.862 21.78 20.23
SE 41.71 8.045 19.94 40.45

VLSE 159.5 164.0 175.5 169.8
ARSM 135.0 169.0 157.5 158.9

have significantly larger evidence than either the IND or SE models, regardless of turbulence
model. This result confirms that the inhomogeneous stochastic models are able to represent
the turbulence model error better than their homogeneous competitors. Second, it is clear
that a proper stochastic model extension is critical to the physical model comparison. If the
inhomogeneous stochastic models had not been developed, the BL turbulence model would have
the largest evidence—i.e., it would appear the most probable.

Finally, assuming a uniform prior, one can compute the posterior plausibility from the
evidence. In this case, most of the models have posterior plausibility very close to zero. The
model with the largest posterior plausibility is the Chien, VLSE model at 0.995. The v2-f , VLSE
and SA, ARSM models have posterior plausibility of 3.33× 10−3 and 1.50× 10−3, respectively.
All the other models have posterior plausibility of 10−5 or less. Clearly, this result indicates
that the calibration data strongly favors the Chien, VLSE model. However, this result does not
imply that the Chien model is the “best” turbulence model in any general sense. Additional
data and/or additional models could lead to different posterior plausibility results.

4.3. Prediction
The centerline velocity at Reτ = 5000 is the prediction QoI. Recall that no data at Reτ = 5000
is used in the calibration, and no DNS data for Reτ = 5000 is available for comparison. Figure 2
shows the PDFs for the QoI. Two sets of results are shown. Figure 2(a) shows the QoI PDF
given by the Chien turbulence model coupled with each stochastic extension. The stochastic
model affects both the predicted mean and uncertainty. Most notably, the IND and SE models
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Figure 2. PDFs for the QoI. Left: The Chien k-ε turbulence model coupled with each stochastic
extension. Right: Each turbulence model coupled with the VLSE stochastic extension.

give significantly smaller uncertainty than the VLSE model. However, the evidence deems them
extremely unlikely given the data. Thus, one cannot trust their predictions.

Figure 2(b) compares results generated by the different turbulence models using the VLSE
stochastic extension. The Chien and v2-f models agree quite closely. The SA model gives nearly
the same mean but slightly larger uncertainty. Only the BL model appears to give significantly
different results.

5. Conclusions

A Bayesian approach has been developed and applied to quantify uncertainty in RANS
turbulence models. The approach consists of four stages: stochastic model development,
calibration, model comparison, and prediction. These stages lead to a probabilistic prediction
of the QoI that accounts for both parameter and model uncertainty.

The UQ procedure was applied to incompressible, fully-developed channel flow. The evidence
strongly supports the use of inhomogeneous stochastic models, and the Chien k-ε model was
found to have the highest posterior plausibility. Using this model, the centerline velocity at
Reτ = 5000 is predicted with an uncertainty of approximately ±4%.

Ongoing work is focused on developing new stochastic extensions, particularly stochastic
models for the Reynolds stress tensor, for application in more complex flows.
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