
Journal of Physics: Conference
Series

     

OPEN ACCESS

Imbalance of community structures in epilepsy
To cite this article: G J Ortega et al 2010 J. Phys.: Conf. Ser. 246 012036

 

View the article online for updates and enhancements.

You may also like
Risk of seizures induced by intracranial
research stimulation: analysis of 770
stimulation sessions
Hannah E Goldstein, Elliot H Smith,
Robert E Gross et al.

-

Non-invasive wearable seizure detection
using long–short-term memory networks
with transfer learning
Mona Nasseri, Tal Pal Attia, Boney Joseph
et al.

-

Seizure forecasting using machine
learning models trained by seizure diaries
Ezequiel Gleichgerrcht, Mircea Dumitru,
David A Hartmann et al.

-

This content was downloaded from IP address 3.21.100.34 on 06/05/2024 at 10:35

https://doi.org/10.1088/1742-6596/246/1/012036
https://iopscience.iop.org/article/10.1088/1741-2552/ab4365
https://iopscience.iop.org/article/10.1088/1741-2552/ab4365
https://iopscience.iop.org/article/10.1088/1741-2552/ab4365
https://iopscience.iop.org/article/10.1088/1741-2552/abef8a
https://iopscience.iop.org/article/10.1088/1741-2552/abef8a
https://iopscience.iop.org/article/10.1088/1741-2552/abef8a
https://iopscience.iop.org/article/10.1088/1361-6579/aca6ca
https://iopscience.iop.org/article/10.1088/1361-6579/aca6ca
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsvTeLIRDnnkK6JOx1Pl_ROmTeNbjC1dfO0bGOlUJFbF4gFdAGJxIoZHmkPnM3htKKcsHaFeNkrp8mLfZcSDL9wKDVv_6kzDffO5gvgjr4KeE61XK8G9bnnsNt3hAEeHBTHrazCVUG3_iqOu9wJa-u68ayze-q3o_GNNRePUv452skIwlRizvOSLp3iX-ITYPnq_d60tDRKEKCDvtCNzdcDoC6P8JZamFXxwyXPDFGd4T-2NkVId1VNkBtdUTDoL9tnj3dSBxvOJauDse206Xb9vPcnDKSRDlSiW6JotZLJFh960cl4QdPQBDZH7aAwZQ_0pd89tsjjmsGCVkqxC8_vS-w0E4w&sig=Cg0ArKJSzDbIAYwVsB1E&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


 

 

 

 

 

 

 

Imbalance of community structures in epilepsy  

Guillermo J. Ortega
1
, Iván Herrera Peco

1
, Rafael García de Sola

1
 and Jesús 

Pastor2 

1Neurosurgery and 2Clinical Neurophysiology Services, Hospital Universitario de la 

Princesa, Diego de León 62, 28006, Madrid, Spain. 

E-mail: gjortega.hlpr@salud.madrid.org 

Abstract. Epilepsy is commonly associated with synchronous activity in the form of spikes 

and also in developed seizures. Desynchronised activity seems to play an important role also in 

the seizure process, favouring the initiation of seizures. The aim of the present work is to 

explore synchronization activity in the inner areas in the temporal lobe of epileptic patients by 

a novel approach.  Two temporal lobe epilepsy (TLE) patients’ records have been analyzed 

through a cluster analysis. Electrical activity in the inner part of the temporal has been recorded 

by using Foramen Ovale Electrodes (FOE), a semi-invasive technique frequently used in drug 

resistant epileptic patients. Instead of tracking synchronized activity, we give here special 

attention to desynchronized activity, mainly those areas which are not included in 

synchronization clusters. Our results show that electrical activity in the epileptic side behaves 

in a less cohesive fashion than the contra-lateral side. There exists a clear tendency in the 

epileptic side to be organized as isolated clusters of electrical activity as compared with the 

contra-lateral side, which is organized in the form of large clusters of synchronous activity. In 

particular, we shall give special attention to the cluster desynchronization during the seizures. 

As we shall show, our results can help in understand several characteristics of the seizures 

dynamics.  

1.  Introduction 
Traditional methods used to assess correlated and synchronized activity in a system of interacting 

members has come to be revisited and generalized in recent years in order to cope with nonlinear and 

chaotic phenomena. In this sense new concepts, as for example weak, strong and generalized 

synchronization [1][2] are now widely used to describe the collective behavior of interacting systems 

and in particular, systems composed of neurons at several scales. More recently, the complex network 

theory [3][4] has provided new insights to approach the study of several kind of networks, in 

particular, brain networks, allowing to extract the main and distinctive properties of large assemblies 

of interacting neurons. In particular, detection of community structures [5][6] allows classify and 

organize different degrees of synchronized activity in a very comprehensible way. 

Neural dynamics nowadays is an active field covered from several different points of views since 

the pure theoretical basis to the most clinical and practical perspective. Epilepsy, which traditionally 

have been associated to a synchronization disorder [7], or even more, with a hyper-synchronization 

disease [8][9], it is currently revisited and reinterpreted under the light of the new desynchronization 

point of view [10][11][12]. 

In the classical view [13][14] the epileptic activity in the form of epileptiform spikes displayed in 

the ElectroEncephaloGram (EEG) is caused by the hyper-synchronous activity in thousand of neurons 
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typically located in the hyppocampal and parahippocampal areas. This spiking activity remains 

confined to small regions, but sometimes, at the beginning of a seizure, the neurons' spiking activity 

overcome the surrounding inhibitions and then this synchronous activity begins to spread, activating 

synchronously large populations of neurons at distant areas [14], corresponding with the clinical 

manifestations of the epileptic seizures, commonly characterized as ‘hypersynchronous states”. 

Several works [9][10][11][12][15] however has apparently challenged this traditional view 

demonstrating that desynchronous activity is essential for the initiation and maintenance of epileptic 

seizures. Far from contradicting the classical knowledge, recent desynchronization results shed new 

light in the fragmented understanding we have today of the complex process which spark and sustain a 

developed and extended hypersynchronization activity during the clinical seizure. It is now fairly 

evident that in temporal lobe epilepsy (TLE) the whole process of seizure generation is associated with 

dramatic changes in neuronal synchronization at several, both temporal and spatial, scales mainly in 

the mesial region, amygdala, hippocampus and inner cortex of the brain, the major structures affected 

in this pathology. 

In this paper we will introduce a new methodology to study synchronization activity in two TLE 

patients. Firstly, we will classify the community structures of the electrical activity in the inner side of 

the temporal lobe, recorded by FOE. We will identify desynchronized areas from the rest of the 

synchronization clusters by constructing a hierarchical tree of interactions, which we will call 

desynchronized electrodes (DE). We are able to identify the epileptic side, especially during the 

seizure by tracking the number of these DE along the entire FOE record. We will explain the proposed 

method in two TLE patients. 

 

 
 

 
Figure 1: (A) Mesial aspect of the right temporal lobe and the right cerebellar hemisphere in a model of brain and skull. A foramen ovale 

electrode (FOE) was introduced through the right foramen ovale in order to demonstrate its localization within the mesial structures. The 

arrow indicate one of the six FOE locations. (B) Representative segments of FOE time series. Rf1-Rf6 stands for right FOE’s #1 to #6 (right 
panel) and Lf1-Lf6 stands for left FOE’s #1 to #6 (left panel). 
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Methods 

1.1.  Neurophysiological time series 

Semi-invasive FOE technique has been developed [16] with the aim to record electrical activity at the 

inner part of the brain's temporal lobe, the main structure affected in temporal lobe epilepsy. Each 

FOE is a thin platinum wire, which is inserted through the ovale hole at the base of the skull. In this 

way, it allows to access deep structures in the head, especially the inner side of the brain, but without 

the need to go through into the brain. It records mainly the electrical activity at the surface of the inner 

side of the temporal lobe. Each wire consist of typically six contact electrodes [17] and during the 

placement procedure, two of these FOE are inserted bilaterally, one in each side of the brain. In figure 

1 is displayed one FOE along its placement in between the inner part of the temporal lobe and other 

deep structures. The arrow in figure 1(A) shows one of the six electrodes in that FOE. 

Digital FOE data, acquired at 500 Hz, filtered at 0.5–60 Hz and exported to ASCII format 

(XLTEK, Canada) at 200 Hz were used. Artifact free epochs lasting around 60 minutes were selected 

for further numerical analysis. All derivations were referenced to the scalp (Fz+Cz+Pz)/3 (standard 

10-20 system). In figure 1(B) it is displayed ten seconds of a typical FOE record. Data were post-

processed using Fortran and R programs. FOE will be named Lf1-Lf6 for the left electrodes and 

accordingly Rf1-Rf6 for the right electrodes.  

Two neuro-physiological records have been analyzed in this work and both of them include a 

clinical seizure, characterized by a sudden change in the statistical properties of the electrical records 

which are translated in the typical epileptic symptoms. In figure 2 we show the standard deviation of 

all the scalp and FOE electrodes as a function of time. The clinical seizure onset, as indicated by the 

expert physician is around the minute 13.4. Clearly it can be seen the high and synchronous amplitude 

of several FOE, mainly in the left side. In this particular case, the patient suffers from a left TLE, 

which means that clinical seizures begin at this particular side of the temporal lobe, where the focus is 

supposedly located.  

 
Figure 2: A typical neuro-physiological seizure of patient A. Level plot representation of the standard deviation in all electrical records, scalp 

and FOE. Clinical seizure begins at minute 13.4. 
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1.2.  Signal Analysis 

Multivariate FOE records of 12 channels (6 for each side) are divided in non-overlapping temporal 

windows of 512 data points (2.56 seconds). Longer values (1024 and 2048) have been used with 

qualitatively equivalent results. In each temporal window, cross-correlation among the 12 FOE time 

series was calculated, by using the Pearson correlation coefficient [18]: 
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x ,1,1),( ===x  is each of the 12 (Nchan) channels of 512 (Nwin) data points 

each. We have selected this rather small number of points in each temporal window in order to obtain 

a suitable temporal resolution in each of the synchronization measures calculated (see below).   

Correlation structure will be the base of our further calculations. No other synchronization measure 

will be used here. The main reason in using correlation instead of other nonlinear synchronization 

measures is that it performs well when it is used over neurophysiological data [10][18][19]. Another 

synchronization measure commonly used in recent years is phase synchronization [11][18], but as was 

very recently demonstrated, it must be used with extreme caution in neurophysiological electrical 

records [21]. 

 

 
 

Figure 3: Synchronization and hierarchical trees. (A) Distance matrix for a particular temporal window of 512 data points in the patient A 

record. Only FOE electrodes are displayed. (B) Hierarchical tree (dendogram) corresponding to the distance matrix of (A). (C) and (D) two 
more dendogram corresponding to other temporal windows in the patient A record. Enclosed electrodes are DE (see text). 
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1.3.  Community detection and desynchronized electrodes 

 

In order to characterize the principal cortical interaction in the mesial area of the temporal lobe, we 

have implemented a recently developed algorithm aimed to detect clusters of interaction in a 

hierarchical tree, as it is for example the dendogram. The practical importance of hierarchical trees is 

that the data are not partitioned in a single step, but instead, a series of partitions are performed 

sequentially, accordingly with a specific rule. This is the best approach when there is no evidence in 

advance of how the interactions are organized. The hierarchical organization so obtained by any 

hierarchical clustering algorithm can be easily transformed in a community structure by simply cutting 

the hierarchical tree at a specific level.  

In order to construct a distance organization from the interactions information, we shall transform 

correlation, as given by (1), in distances, in accordance with: 

 

 ρij = |δij|  ;  )1(22),( ijijjjiijid ρρρρ −=−+=     (2) 

 

In this way, from the correlation matrix (1) we obtain the corresponding distance matrix. In figure 3 

(A) we display a typical distance matrix for one of the temporal windows. From the distance matrix, it 

is now fairly easy to construct a hierarchical tree by using one of the traditional methods. We have 

chosen the agglomerative single-linkage [4] clustering technique. In this way, from the distance 

matrix, a hierarchical organization is achieved. In figure 3(B) it can be seen the dendogram 

corresponding to the distance matrix of figure 3(A). The correspondence between both figures is 

simply observed. In Figure 3(A) there exist higher correlations among the FOE of the right side than 

the correlations among the FOE of the left side, as displayed by the darker squares in the right side 

(upper-right corner), meaning shortest distances between the right electrodes. This fact is reflected in 

the dendogram, figure 3(B), where the right FOE are located at a deeper position in the tree that the 

left FOE, which are linked among them, but in an elevated position. We also display in figure 3(C) 

and 3(D) dendograms corresponding to other temporal windows. In these figures it is apparent that 

there exist equivalent correlations between the left and right electrodes, with the exception of few 

cases. Although both groups of electrodes are at the same level that is, left and right electrodes are 

grouped in individual clusters with similar height, there exists, however, some electrodes that appear 

outside the corresponding cluster. For instance, in figure 3(C) the left electrode Lf5 (encircled) appears 

desynchronized from the rest of the left electrodes because its high position in the dendogram. In the 

same way, left electrodes Lf4, Lf5 and Lf6 (enclosed) seems to be desynchronized from the 

synchronized cluster Lf1-Lf2-Lf3. These facts seem to favor the idea that there exists different cluster 

or community organization between both sides. Because the patient suffers from a left TLE, it seems 

that the areas covered by the left electrodes are less synchronized than the areas in the opposite side. In 

this way, we will give special attention to this kind of desynchronization.  

  

1.4.  Correlation measures 

From the correlation matrix (1) we shall calculate three synchronization measures in order to compare 

against our results. All the calculated measures are normalized to its mean and standard deviation, for 

easy of comparison. 

 

• Minimum Spanning Tree Cost (MSTC) 

From the correlation matrix it is possible to construct a tree, without loops, and with 

minimum total length in such a way that it represents the main interactions among the 

electrodes. This is called the Minimum Spanning Tree (MST). The total length of all the 

branches of the tree it is called "cost" of the MST. There exist a very simple way to 

construct the MST by using the Kruskal's algorithm. We shall use the MST cost as an 
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indicator of the seizure appearance because during a seizure exists an overall hyper-

synchronization among different and distant areas in the brain, and in this way, the total 

cost of the MST must be reduced. We shall calculate the MST cost of all the FOE plus the 

scalp electrodes in order to consider the global synchronization produced during a clinical 

seizure.  

 

• Average Synchronization (AS) 

In order to quantify the degree of synchronization among the FOE in each side, we shall 

simply sum the distances between pairs of FOE, for the left and for the right sides, and 

divide by two these quantities (due to the symmetric character of the distance matrix): 
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• Correlation eigenvalues (CE) 

Because the distribution of correlation eigenvalues (λi) is tightly linked to the 

synchronization characteristics of the time series, where a very unequal distribution of 

eigenvalues (for instance only one eigenvalue different from zero) implies a high 

synchronization among the time series, we shall calculate the following measure: 
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When all the eigenvalues λi are equal, that is, all the time series are desynchronized we 

shall get a maximum of CE. On the other side, for a perfect case when exists only one 

eigenvalue different from zero, the case of a perfect synchronization, we shall get the 

minimum of CE. In this way, lower values of CE, either left or right, will mark the 

presence of synchronization among the involved electrodes. Note that correlation matrix 

must be definite positive for the proper (4) calculation. Any departure from this condition 

however must be due certainly produce by wrong inputs into the correlation matrix.  

3. Results 
 

We have applied the above described methods in two FOE records during typical patients' seizures. In 

each temporal window of 512 data points, we have calculated the correlation matrix through (1) and 

then transformed it into a distance matrix through (2). After that, a dendogram is constructed as 

explained in the Methods' section, and the identification of those electrodes that cannot be assigned to 

a synchronization cluster are counted. For instance, in figure 3(C) there is one electrode, namely Lf5 

which seems to be desynchronized from the rest of all electrodes. Therefore, we count in this temporal 

window that there exists one left electrode that is not synchronized, or declusterized from the rest. In 

figure 3(D) instead, there exists three of these electrodes, Lf4, Lf5 and Lf6 which are declusterized 

because the three electrodes in the left side, Lf1, Lf2 and Lf3 seem to be tightly connected among 

them because its lower position in the dendogram. therefore we count 3 left DE in this temporal 

window. In the same way, all of the right FOE seems to be also strongly connected forming a large 

synchronized cluster of six electrodes.  

In order to dig further into this fact we have implemented an automatic procedure to identify 

clusters of synchronous activity in every temporal window in records of approximately 60 minutes, 

yielding typically 360 temporal windows. To automatically detect synchronization clusters, we have 

selected a recently published algorithm [22] aimed to identify clusters in hierarchical structures as the 
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one depicted in figure 2. Given a minimum number of electrodes the clusters must have, the algorithm 

automatically extract and identify all of the clusters contained in the dendogram. Those remaining 

electrodes not belonging to any clusters continues unassigned and are labeled as DE.  

In figure 4 we show the main results in the two selected records, A and B. In each case the results 

are divided in both left and right counts. For instance, in figure 4(A) we show the counts of DE for the 

left side (upper panel) and the counts of DE for the right side (lower panel). The solid vertical line 

marks the beginning of the seizure as indicated by the expert physician. It is remarkable the big 

difference between the number of DE in the left side as compared with the right side, where there 

exists more DE in the left side. In this sense, this temporal lobe displays lower synchronization than 

the right temporal lobe because the higher number of desynchronized electrodes in this side. Also, it is 

interesting to note the seizure synchronization effect around minute 13.4, where the seizure begins. 

The left side, where it is suspected that the focus resides, seems to be "unaware" of the 

synchronization wave produced by the seizure, contrary to what happens in the opposite side, the right 

one, where the few desynchronized electrodes are still present until the moment of the seizure onset, 

vanish almost instantaneously. It seems that during the seizure there exist a perfect synchronization in 

the right side and no appreciable effect in the left one. After 2 minutes of seizure however, it seems 

that there exists a higher level of synchronization in the left side, looking through the less number of 

DE in that side, and equal level of synchronization in the right side. It must bearing in mind that this 

patient suffers from a left TLE, that is, the origin of its seizures is in the left temporal lobe. 

 

 
Figure 4: Number of DE as a function of time. (A) Both left and right DE counts as a function of time for patient A. (B) Both left and right 

DE counts as a function of time for patient B. 

 

Something similar happens in the other patient's record, which suffers from a right TLE. The 

seizure onset is around minute 52.5. Also in this case, there exists a clear imbalance between right and 

left DE, being much more DE in the right side. After the seizure onset, it seems that there exists a 

lowering in the DE in the right, or epileptic, side, and none DE in the other side. But after a while after 

the seizure, it seems that the same levels of DE are achieved in both sides. 

In order to compare our results against more classical measures, we display in figure 5 the 

calculations of the measures explained in the Methods section. In both cases, A and B of figure 5, we 

show the three measures. The seizure onset is marked by a vertical line. In the upper panel it is 

displayed the MST cost. In the middle panel we show the AS, for the left and right side, and in the 

lower panel the CE, also for the left and right sides.  
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The MST cost, which is a global synchronization measure, clearly shows a drop off at the 

beginning of the seizure, indicating that due to the higher level of correlations among all of the 

electrodes, the distances among them are reduced drastically.  

AS are displayed in the middle panel of figure 5 (A) and (B). The solid line shows the ASleft and the 

dotted line the ASright. In this case, there exists a striking difference between both sides because the left 

side shows a steepest drop off than the right side, at least during the seizure development, which finish 

when the seizure ends, approximately 2.5 minutes after the seizure onset. This effect is more intense in 

the patient A than in the patient B, either in intensity and in extent. The decrease in  ASright confirm the 

findings of figure 5 (A) because in the right side there exist a higher synchronization, expressed by the 

vanishingly number of DE as in figure 4 (A) and also by the lower values that the ASright takes. Note 

that in the left side, there is a short period, just after the seizure onset, where the number of DE is 

higher than before the seizure onset (figure 4 (A)). This fact is confirmed by the short increase in the 

average distance in the left side in the middle panel of figure 5 (A). 

 
Figure 5: Correlation measures for both patients during the clinical seizure, as a function of time (10 minutes). All the measures are 
normalized to its mean and standard deviation. (A) Patient A, Upper panel: MST cost. Middle panel: AS for the left and right lobes. Lower 

panel: CE for the left and right lobes. (B). The same as in (A) but for patient (B).   

 

Lastly, in the lower panel of figure 5 (A) and (B) we reproduce the calculations for the eigenvalues 

of the correlations matrix. By comparing these figures against the corresponding to the case of average 

synchronization, we can conclude that both measures behave in a very similar fashion. 

4. Discussion 
 

A clear imbalance between both mesial areas in TLE patients regarding its synchronization activity 

was shown here. Synchronization patterns have been quantified here by the property of being part of a 

synchronization cluster or not. Those areas belonging to any cluster have therefore its activity well 

synchronized with other areas within the cluster. In contrast, those regions which are not member of 

any cluster are, therefore, desynchronized from the rest, i.e. they are desclusterized regions. In both 

TLE patients shown here the area covered by the FOE’s in the epileptic side behaves highly 

desclusterized as compared with the contra-lateral side, where mesial sites have a tendency to behave 

highly synchronized among them within one or several clusters. As we have also shown, 

declusterization is directly related with desynchronization in the whole side. The higher levels of 

declusterization displayed in the epileptic side produce lower levels of synchronization, as quantified 

by the synchronization measures used, AS and CE. Regarding these measures, both behaves in a 
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similar fashion, and also are easily calculated from the information provided by the FOE records. 

Thus, they can be used in analyzing large amount of data.    

One of the main concerns in epileptology, especially in patients reluctant to drug treatment, it is the 

exact location of the focus, the supposedly origin of the clinical seizures because the last alternative 

treatment it is the surgical removal of the brain tissue responsible of the clinical symptoms. Although 

there is a vast battery of diagnostic techniques, as for example Magnetic Resonance Imaging, Single 

Photon Emission Tomography, Positron Emission Tomography and neurophysiological EEG signal, 

which are aimed at localize the true position of the epileptic focus, not always they accomplish its 

mission. In fact, in several occasions they yield contradictory results [23], for example, locating the 

epileptogenic area in different hemispheres. Although v-EEG is still the most confident lateralization 

and localization method, it largely relies in the analysis of the ictal phase as the true indicator of the 

seizure origin.  Because of that, patients often remain in the v-EEG room for several days in order to 

account for a number of seizures which allow lateralize the epileptic side in a confidently way. The 

methodology described here seems to give more robust results with only two or three hours of 

analysis, saving therefore patients’s time of hospitalization. 

As we have shown in this paper, tracking the number of DE in each temporal lobe seems to be a 

reliable technique which allows easily and quickly get insight into the synchronization phenomena in 

the epileptic brain during the seizure, allowing the identification of the epileptogenic side. 
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