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Abstract In the present work, we quantify the fraction of trajectories that reach a specific 

region of the phase space when we vary a control parameter using two symplectic maps: one 

non-twist and another one twist. The two maps were studied with and without a robust torus. 

We compare the obtained patterns and we identify the effect of the robust torus on the 
dynamical transport. We show that the effect of meandering-like barriers loses importance in 

blocking the radial transport when the robust torus is present.    

1.  Introduction 
In a previous work [1] we introduced a non-twist map with a new transport barrier called robust torus 

(RT), through a known Hamiltonian derivation in which the RT had been introduced in a systematic 

way [2,3,4]. The motivation to create this new map was the relevance of transport barrier to plasma 

confinement in tokamaks [5-7] and also because our map could be a natural extension of usual maps 

[8-13] applied to study theoretically transport in tokamaks. In another work [14] we adapted our map 

with a single robust torus and adjusted the parameters according to the experimental ones used in the 

tokamak TCABR. We have verified that the RT regularizes the orbits close to its position in the phase 

space and blocks the radial transport inside the tokamak plasma. The main idea to create a RT is to 

introduce an appropriate polynomial pre-factor multiplying the resonant perturbations which act on the 

system in such way that their effects vanish on particular positions of the phase space even if the 

control parameter is turned on. This vanishing will occur in the values of the roots of the pre-factor. 

The RT in fact corresponds to an invariant curve which remains intact under the action of any generic 

perturbation. 

 In this work, we quantify the portion of trajectories that reach a specific region of the phase 

space when we vary a control parameter using two maps: one non-twist and another twist, both of 

them with or without a robust torus. The non-twist maps present isochronous resonances [15], which 

can reconnect themselves and generate the well known meandering barriers [16].  

 We compare the obtained patterns for the non-twist and twist maps, with and without RT, 

and we identify the effect of the RT on the dynamical transport. We create a RT near a secondary 

resonant mode and we show that the robustness of the RT is transferred to its neighborhood. Because 
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of that, the effect of the other meandering-like barrier, present in the non-twist map, loses importance 

in blocking the radial transport when the RT is present.  

 The paper is organized as follows; in Section 2 we present a brief Hamiltonian approach 

relevant for plasma confinement in tokamak. In Section 3 we show the corresponding non-linear maps, 

twist and non-twist, which we are going to use. In Section 4 we discuss the results on transport in the 

phase space and in last section we present final remarks. 

 

2.  Hamiltonian Approach 
As a background motivation, in this section we review the usual Hamiltonian approach developed for 

plasma confinement in tokamaks in order to introduce the RT in this formalism and also to link it with 

our map. We propose an equilibrium Hamiltonian, H0, with toroidal symmetry and we define the 
toroidal angle, φ, as the canonical time t. This non-perturbed Hamiltonian corresponds to an integrable 

system and it is described by an analytical solution of the non-linear Grad-Shafranov equation [17]. H0 

is given in terms of the action J, corresponding to the toroidal normalized flux, and ϑ  the poloidal 

angle canonically associated to J [18]. The perturbations are generated by a helical electric current 

applied from thins ergodic magnetic limiters (EML) distributed along the poloidal direction in toroidal 

sections of the tokamak [19]. The perturbing Hamiltonian, H1, is a function of J, ϑ  and t, and it is 

represented by a Fourier expansion of delta-kicks due to the EML rings [10]. The perturbations create 

a region with chaotic magnetic field lines at the plasma edge. 

We expand H0 around a magnetic surface with action J0 and frequency Ω0=n/m where Ω0 is equal 

to the inverse of the safety factor q and n and m are integers. In the Fourier perturbation expansion, we 

keep only the two main resonances in such way the Hamiltonian has only the dominant resonant 

modes with poloidal wave numbers m and (m+1) [10,19], 
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where 0JJJ −=∆  and Nr=4 is the quantity of EML rings equally spaced around the tokamak. 

We also consider two equilibrium configurations for the frequency profiles JddH ∆≡Ω 00 given 

by: 
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for the non-twist case. 

The parameters β and η in Eq. (1) represent the perturbing electric current applied in EML rings 

and the parameters α in Eq. (3) is determined by the safety factor profile defined by H0. The pre-factor 

P(∆J) in Eq. (1) is a polynomial function and it allows us to introduce the RT.  

We emphasize that, for a generic polynomial function, it is possible to have a number of RT equal 

to the number of real roots of this polynomial. Thus, this procedure enables us to construct a 

Hamiltonian to study the alterations of the magnetic field lines topology due to the presence of an 

infinity barrier, a RT. 
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3.  Non-linear maps 
In order to investigate the characteristics of the phase space concerning transport, due to the presence 

of a RT, we consider the Hamiltonian of Eq. (1) with the non-perturbed Hamiltonian, H0, of Eq. (2) 

and (3), twist and non-twist cases respectively. We also choose two configurations for the pre-factor, 

one with P(∆J)=1 for the usual Hamiltonian without RT and another one with P(∆J)=(∆J–a) 

introducing one RT in the position ∆J=a. However, instead of working with the Hamiltonian 

formulation we will take the corresponding non-linear map associated to the Hamiltonian of Eq. (1) 

that was derived in details by us in [1]. Thus, the non-twist map with two resonant modes and without 

RT is,  
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The non-twist map with two resonant modes and with one RT is, 
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In all numerical calculations we chose m=3 and n=1 introducing the resonant modes (1:3) and 

(1:4). The constant α that appears in Eq. (3) is adjusted for both maps, in the twist case α=0 and in the 

non-twist case α=160.15. We will split our study in four analyses:  

i) Case Non-twist without RT, Eq. (4) with α=160.15; 
ii) Case Non-twist with one RT, Eq. (5) with α=160.15; 

iii) Case Twist without RT, Eq. (4) with α=0; 

iv) Case Twist with one RT, Eq. (5) with α=0.  
For the non-twist equilibrium, there are isochronous resonances in the phase space. Figure 1(a) 

corresponds to the case i), where two isochronous resonances (1:3) has already reconnected and they 

are dimerized and separated by invariant meandering curves. Such invariant curves encircle both sets 
of surviving islands (1:3) and they exist only in non-twist maps. In plasma confinement approaches, 

the meandering curves are located in the shearless region, which traps the magnetic field lines for a 

long time hampering the radial diffusion, in such way that an internal transport barrier (ITB) takes 

place due to a strong stickiness effect [20]. 
Figure 1(b) corresponds to the case ii), the RT is indicated in blue color at the position ∆J=3=a, 

and the alterations introduced in the dynamics are noticeable. We still have the two (1:3) and (1:4) 
island chains, but now an interesting topological rearrangement occurred, the chaotic sea that was 
close to the upper island chain (1:4), in Figure 1(a), had been suppressed due to the presence of the 

RT. The motion near the RT is kept integrable while in the other side of the meandering curves there is 

still a significant destruction of the invariant curves around the low resonance (1:4) showing a visible 

chaotic sea. 
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Figure.1. Poincaré sections for the resonant modes (1:3) and (1:4) for α=160.15: (a) Non-twist map, 

Eq. (4), without RT with 410x3.1 −−=β  and 41015.1 −= xη , the blue line at ∆J=3 is only to guide the 

eyes, it is not a RT; (b) Non-twist map, Eq. (5), with RT (in red) at ∆J=3, with 3
10x0.4

−−=β and 

3
10x2.9

−=η . 

 
 

Figure 2(a) corresponds to the case iii) and we see the dominant island chain (1:3) and the main 

secondary resonance (1:4) embedded in a chaotic sea with several other secondary resonances. In this 
configuration, the barriers are in fact the island structures, which will be destroyed as the parameters 

are varied. On the other hand, in Figure 2(b), which corresponds to the case iv), we can see the 

stabilizing alterations introduced by the RT, which is indicated in red colour in ∆J=a=3. Note that, for 
the parameters used to plot Figure 2(b), the chaotic sea near the RT, around the island (1:3), is 
suppressed and the neighbourhood around ∆J=3 is more stable than the one of the Figure 2(a) 

evidencing the local effect of the RT. 

 
 

 
 
Figure.2. Poincaré sections for the resonant modes (1:3) and (1:4) with α=0 for: (a) Twist map, Eq. 

(4), without RT with 4
10x0.6

−−=β and 4
10x99.2

−=η , the blue line at ∆J=3 is only to guide the 

eyes, it is not a RT. (b) Twist map, Eq.(5), with RT (in red) at ∆J=3, with 
3

10x5.7
−−=β and 

3
10x2.8

−=η . 
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We should emphasize that different Hamiltonians (maps) govern the system without RT (Figures 

1(a) and 2(a)) and with RT (Figures 1(b) and 2(b)) and hence the scale of the parameters are different. 

In addition, the ranges of β are different because the non-twist system has one term that does not 

appear in the twist system.  
 

4.  Dynamical transport on the phase space 
In this section we present the transport of an ensemble of initial conditions given inside the small red 
boxes in Figures 1 and 2, with and without RT, as function of the parameter β. We iterated 110 initial 

conditions inside the red squares and we varied the perturbation parameter β in order to investigate 

how many initial conditions reach the position ∆J=3 (in blue), after 2500 iterations of the maps of 

equations (4) and (5). This small quantity of collected iterations does not lead to any loss of generality 
because we intend to investigate the effect of barriers or stickiness in the transport, which could be 

neglected if we had taken a bigger quantity of iterations than the one considered here.   

For the non-twist cases, the meandering curves play the role of partial barrier and they interfere 
differently on the transport depending on the presence of the RT. When the system does not have a 

RT, case i), the trajectories reach the reference line after the destruction of the meandering curves. 

However, as showed in [21] this kind of curves has a discontinuous behaviour, they disappear for 
some values of β but they exist for many other intercalated values of β. So, for the case i) without RT, 

the fluctuations seen in Figure 3(a) show exactly the sensibility of the meandering curves for different 

values of the perturbation, while for the case ii) with a RT, in Figure 3(b) the trajectories reach the 

reference line, which is in fact the RT, only after the destruction of the resonance mode (1:4). Hence, 
in this case, the destruction or existence of the meandering curves is not a sufficient condition for the 

considered orbits reach the reference position. For the twist case, the small boxes in Figures 1 and 2 
are above the resonance (1:4), thus we are going to investigate the effect of the RT in the 
neighborhood of the resonance mode (1:3). Figure 3(c) and 3(d) correspond to the case iii) and iv) 

respectively, and we observe a similar behaviour in the transport rates but with a small nuance. In the 

case without RT, Figure 3(c), as the structures are being destroyed the transport increases but the 

trajectories still find some regions with a soft stickiness. In the case with RT, Figure 3(d), as the 
resonance structures are destroyed the transport increases abruptly and we observe a soft stickiness 

only around the RT.  
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Figure.3. Percentage of initial conditions that arrived ∆J=3 up 2500 iterations: (a) Non-twist map 

without RT, Eq. (4); (b) Non-twist map with RT, Eq. (5); (c) Twist map without RT, Eq. (4); (d) Twist 
map with RT, Eq. (5). 

5.  Conclusions 
The non-liner maps that we use here may describe the equilibrium magnetic field lines perturbed by 
resonances created by rings of ergodic magnetic limiters. In previous works [1,14], robust torus had 

proved to be, theoretically, an efficient transport barrier that prevented the magnetic field lines to 

reach the tokamaks wall, avoiding plasma-wall interactions. 
We showed here the behavior of two different transport barriers, one formed by the reconnection 

process of isochronous resonances, the meandering curves, and another formed by the vanishing of the 

perturbation in a particular region, through the introduction of a RT. In our approach the RT is 

stronger than the meandering barriers due to the stabilizing effect it induces in its neighborhood. We 
checked the behaviour of dynamical transport from our maps for different resonant modes with 

rotation number close to the resonant mode (1:3) used here, and we have observed that the qualitative 

behavior of the transport is similar with the plots showed in figure (3). The RT plays a remarkable 
influence on the dynamical transport; this is the reason that this kind of robust barrier is relevant for 

Hamiltonian plasma approaches. 
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