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Abstract. The effect of magnetic field on the electronic structure and optical anisotropy of
Zn1−xCdxSe/ZnSe quantum dots (QDs) has been analyzed for varying geometrical confinement
related to the in-plane asymmetry. The disk-shaped QD is modeled by anisotropic parabolic
potential with the magnetic field considered in Faraday geometry. The multiple band
Hamiltonian in presence of magnetic field has been numerically diagonalized using appropriate
basis functions and coordinate transformations for fast convergence. The eigenvalues and
eigenvectors thus obtained are utilized for obtaining the dipole matrix elements. Hence, the
photoluminescence spectra and the degree of linear polarization have been studied for the
anisotropic QDs. The polarization degree is found to increase with magnetic field and anisotropy
parameter.

1. Introduction

Spintronic devices offer a possibility to inject, modulate and detect spin of charge carriers In
the new area of spintronics aimed at quantum computing and quantum communication, self-
assembled semiconductor quantum dots (QDs) are a promising systems for spin-based quantum
computers. Quantum computation applications based on spins of electons or holes as quantum
bits require the preparation of the system in definite spin state and the ability to readout the
spin of the output state. These tasks can be achieved through resonant excitation of excitons
or trions using polarized optical pulse and analysis of the polarized photoluminescence (PL)
spectrum of the output radiation [1].

The precise information about the the spin polarization of the system can be obtained from
the study of optical anisotropy of the PL spectra of QDs which depend on the geometrical
symmetry of the QDs. Magnetic field plays an important role in a spin based application by
lifting the spin degeneracy and controlling the separation between the states of opposite spins.

The objective of this work is to analyze the effect of magnetic field on the electronic structure
and optical anisotropy of Zn1−xCdxSe/ZnSe QDs for varying geometrical confinement related to
the in-plane asymmetry. The disk-shaped QD is modeled by anisotropic parabolic potential with
the magnetic field considered in Faraday geometry. The multiple band Hamiltonian in presence
of magnetic field can be solved by constructing the Hamiltonian matrix in the Hilbert space of
Hermite Gaussian functions for QDs with significant in-plane anisotropy [2, 3]. However, in order
to achieve faster convergence, we have worked with the canonical transformations suggested by
Madhav and Chakraborty [4] for conduction band electrons in anisotropic quantum dots, and
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generalized to the case of multiple valence band structure. The Hamiltonian calculated in the
transformed coordinates has been diagonalized numerically. The eigenvalues and eigenvectors
thus obtained are utilized for obtaining the dipole matrix elements. Hence, the degree of linear
polarization (PL) have been studied for the anisotropic QDs. The polarization degree is found
to increase with magnetic field and anisotropy parameter A.

2. Theoretical formulations

The anisotropic Zn1−xCdxSe/ZnSe QD is modeled using a quantum well confinement potential,
Vz(z) along the z-axis (growth direction) and a parabolic confinement Vxy(x, y) along the x- and
y-axes, respectively. Further, we consider magnetic field applied in the Faraday configuration,
i.e. along z-axis. The potential energy functions Vz(z) and Vxy(x, y), are determined by
various physical parameters including the extent of interdiffusion of the barrier ions in the
QD, valence band offsets, hydrostatic and biaxial strain, size and the shape anisotropy of the
QD. The variation of the composition x of the QD material modifies the energy band gap as
Eg(x) = EgCdSe + (EgZnSe −EgCdSe − b)x + bx2 where b is the bowing parameter [5]. The other
parameters for Zn1−xCdxSe are obtained from a linear interpolation of the ZnSe and the CdSe
parameters.

The electronic structure of the QD can be obtained by solving the Luttinger Hamiltonian
including the strain effects [6, 7]. Due to the s-type symmetry of the conduction band, the strain
simply leads to the shifting of the conduction band edge caused by the hydrostatic deformation
potential. The effect of strain on the valence band is more complicated due to the p-type
symmetry. The hydrostatic strain shifts the heavy-hole (hh) and light-hole (lh) bands by the
same amount, so that, in the strained QD structure the valence band shifts towards higher energy
as compared to the unstrained case. In addition to this, in our system Zn1−xCdxSe/ZnSe, the
biaxial strain component has the effect of increasing the energy splitting between the two valence
subbands [8]. We have considered the magnetic field in the Faraday geometry and adopted
Coulomb gauge whereby the vector potential is given by A = (−By/2, Bx/2, 0). The in-plane
confinement Vxy is defined by the anisotropic parabolic potential Vxy(x, y) = (αxx

2 + αyy
2)/2.

Here, αx,y is dependent on the confinement energies along x and y axes. The Hamiltonian
for z variable can be solved in terms of usual quantum well wavefunctions. For the in-plane
confinement potential Vxy the standard solution would be the Hermite-Gaussian functions as in
the case of Harmonic oscillator. Further, the Zn1−xCdxSe/ZnSe QDs tend to show a high degree
of in-plane anisotropy. This effect is quantified in our model as the anisotropy parameter A which
is defined through the difference in the harmonic oscillator frequencies along x and y directions
resulting in the expression A = (ωx − ωy)/(ωx + ωy) [3]. Thus, an isotropic QD is denoted by
A = 0 whereas A = ±1 would mean a very high degree of in-plane anisotropy approaching the

case of a quantum wire. Here, ωx,y =
√

(αx,y/mj),mj being the mass of electron, hh or lh

depending on the jth band under consideration.
With the inclusion of magnetic field there is coupling of the terms in x and y coordinates in

the Hamiltonian, thus complicating the solution. The equations can be uncoupled through
the canonical transformation of the Hamiltonian [4] so that the diagonal terms reduce to
a system of uncoupled Harmonic oscillators. The off-diagonal terms which are coupled in
all four variables of the transformed coordinate system can be calculated algebraically. The
Hamiltonian is diagonalized numerically using the product of harmonic oscillator wavefunctions
in the transformed coordinates for the basis. The off-diagonal terms in this basis lead to a
reasonably fast convergence as they just provide a correction factor due to mixing of valence
subbands. This transformation introduces an approximation due to presence of two hole species,
however, from the numerical estimates the error was found to be less than 2%.

The energy eigenvalues and wavefunctions obtained after the numerical diagonalization of
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the Hamiltonian are used for the analysis of various optical properties of the QDs. The
intensity for a particular transition can be obtained from the square of the absolute value
of the corresponding dipole matrix element,

∣

∣〈ψc
nc

|e.p|ψv
nv

〉
∣

∣

2
where e gives the direction of

linear polarization of radiation, p is the momentum operator, and ψc
nc

(ψv
nv

) is the conduction
(valence) band state under consideration [3]. The degree of linear polarization is obtained using
the relation PL = (Imax − Imin)/(Imax + Imin) where, Imax and Imin are the maximum and
minimum intensities obtained by varying the polarization angle of the electric field vector e.

3. Results and discussion

In this section, we study the effect of magnetic field on the energy eigenvalues and the degree
of linear polarization in a Zn1−xCdxSe/ZnSe QD using the formulation developed in Section 2.
The material parameters used in the present numerical analysis are given in Table 1. We have
considered the QDs to have Cd content of 40% which yields results in close conformity with
the experimental observations [10, 11]. The dimension of the QD is taken to be 3.5 nm along
the growth axis. The characteristic lateral size of the QD is estimated through the relation
r0 =

√

(h̄/mω0) and gives an order of 8 nm for QD diameter at the typical value of h̄ω0 = 5
meV. The effect of z-confinement has been calculated through a finite quantum well model with
confinement potential determined by the band offsets and strain effects. The band offsets for
x=0.4 calculated through linear interpolation from the pure ZnSe and CdSe parameters are
found to be 387 meV and 108 meV for the conduction band and valence band, respectively. In
case of valence band, the biaxial compressive strain shifts the energy of hh subband by 40 meV
closer to the conduction band thus increasing the confinement potential for hh to 148 meV.
The effect is just the opposite for the lh subband, thus decreasing the well potential by about
96 meV so that the lh remains weakly confined. Using the above values for the band offsets
and the confinement potential along z-direction, the hole energy eigenvalues and eigenfunctions

Table 1. Material parameters for CdSe, ZnSe [5, 9] and Zn0.6Cd0.4Se (linearly interpolated
from data of CdSe and ZnSe).

CdSe ZnSe Zn0.6Cd0.4Se

Eg(eV ) 1.765 2.821 2.326

γ1 2.1 3.77 3.10

γ2 0.55 1.24 0.96

γ3 0.55 1.67 1.22

mc 0.13 0.16 0.15

C11(GPa) 66.7 82.6 76.2

C12(GPa) 46.3 49.8 48.4

Dc(eV ) -2.44 -2.83 -2.68

Dv1(eV ) -1.22 -1.41 -1.34

Dv2(eV ) -0.8 -1.2 -1.04

aL (Å) 6.077 5.668 5.831
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Figure 1. Plots (a) and (b) show the variation of hole energy eigenvalues of Zn0.6Cd0.4Se QD
with magnetic field for A = 0.0 and 0.3, respectively. Plot (c) shows the Variation of PL with
magnetic field for Zn0.6Cd0.4Se QD at (i) A =0.1, (ii) A =0.3, and (iii) A =0.5.

are calculated. Fig.1 (a) and (b) show the variation of energy eigenvalues with respect to the
magnetic field for the isotropic (A = 0.0) and anisotropic QDs (A = 0.3), respectively. The zero
of the energy is taken to be the valence band edge for strained CdZnSe without confinement
effects. In case of isotropic QDs, the mixing of hole states results in an extremely small splitting
of lowest pair of states and the first excited states. On the other hand, in the anisotropic QDs
there is an enhancement in splitting energy with red-shifting of the states [12]. This anomalous
red-shifting of the lowest states has been experimentally observed by Miura et al [13].

We have also plotted the degree of linear polarization, PL of the lowest state as a function of
magnetic field for different values of A (Fig. 1(c)). We find that it increases with the magnetic
field which is a clear signature of hh and lh mixing[3]. It can be seen that the PL enhances as
A is changed from 0.1 to 0.3 and 0.5 which can be attributed to the fact that the anisotropy
increases the valence subband mixing effects leading to enhanced degree of linear polarization.

4. Conclusions

We have studied the effect of magnetic field on the electronic structure and optical properties
of strained Zn1−xCdxSe QDs. Zeeman splitting of energy levels is seen which enhances with
increase in magnetic field. This splitting is found to be more for anisotropic QDs. The degree of
linear polarization is also seen to increase with magnetic field and is higher for the anisotropic
QDs. These features are explained in terms of valence subband mixing which gets accentuated
by the magnetic field.
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