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Abstract. Methods are presented for extending a promising formalism that incorporates 

dissipative forces into Quantum Mechanics.  Hamiltonians and Lagrangians are constructed 

that have additional force and frictional terms while still being consistent with the rules of the 

formalism. The simple systems of a damped particle in a force field and a quadratically 

damped oscillator are discussed.  

1. Introduction 

Not long after Quantum Mechanics was formulated, in the 1930’s, questions arose as to how to 

account for the physical properties of entropy or dissipation in this new branch of physics. 

Schrödinger himself realized that the equation named after him was not adequate to the task, seeing 

that it was reversible. 

     Since that time, a particularly well-reasoned approach that puts dissipative forces into the 

Lagrange-Hamiltonian mechanics on which Quantum Mechanics is based has come from Schuch [1-

3].  His formalism is based on the hypothesis is that dissipative systems can be formulated in a way 

such that they follow the same variational principles as conservative systems.  At the heart of the 

analysis is the realization that the gap between conservative mechanics and analogous formalisms 

having friction must be bridged by non-canonical (classical) transformations and not just a changing 

of coordinate space via unitary (quantum mechanical) transformations. The resulting dissipative 

Lagrangians ( sL' ) and Hamiltonians ( )sH ' have the following convenient properties. The variation of 

the Langrangian produces the correct equations of motion. The corresponding Hamiltonians represent 

the total energy for the system.  The Hamiltonians are a constant of the motion. The Heisenberg 

uncertainty does not vanish with time. These properties support the idea that the formalism is indeed a 

generalization of the variational foundation that underlies reversible mechanics but with dissipative 

effects included. The list of systems that have been studied so far includes the damped harmonic 

oscillator [1]. The intent herein is to show that this formalism allows for other forms to have additional 

assortments of frictional forces and potentials. Other details are found in [4]. 

 

2. Results 
The process of deriving the new examples is guided by the following assumptions. Note that the term 

“real space” here is synonymous with physical space. 

 

1. All sL'  and sH '  must have units of energy 

2. Transformed space (i.e. Q-space) has no dissipation or explicit time dependence 
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3. Transformed space is used to derive H  from L  

4. The variation of L , ( i.e. 0=Lδ ) in both real (i.e. q -space) and transformed space ( Q -space) 

produce the correct equation of motion in real space. 

5. As frictional and potential terms vanish, the correct simpler forms emerge. 

 

Since there are an infinite number of frictional as well as conservative sL'  and sH '  that are 

associated with a given equation of motion [5, 6], the above assumptions greatly reduce the number of 

candidates. To obtain sL'  and sH '  that have the desired properties, the appropriate non-unitary 

transformations are needed to connect physical q -space, which has friction, to a transformed Q-space 

that does not have friction explicitly.  As seen in the figure 1 below, the non-unitary nature of the 

transformation breaks the direct connection that the L  in real space has with its respective H through 

the Legendre transform.  
  

 
Figure 1. 
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as illustrated in [5] that the frictional sL'  and sH ' have “expansion” or integrating factors of the 

form: 
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where G is the term on the right hand side of the generic equation of motion, ),,( tqqGq &&& = .  

     Simultaneous to determining the non-unitary transform, the appropriate L  in transformed space, or 

( )QQL ,&  must also be found. Each ( )QQL ,&  has a kinetic 2
Q& term added to a generalized potential 

function with the form, ( )KK 1010 ,,,, φφξξQV , with Q  as the transformed position and the iξ and iφ  

the relevant coefficients of friction and conservative potential. The generalized potential has no 

explicit time dependence.  The basic approach for creating the generalized potential for a given 

equation of motion is to include any and all pertinent terms that have the units of energy.  For example 

if gravitational potential g is present, a term of the form gQ2  is included. Viscous friction implies a 

term such as 2
2

4
Q

γ .  For quadratic friction, which is proportional to the square of velocity, there 

evidently are no such potential terms that can be found. 

     As an example, the frictional L  and H  for the damped harmonic oscillator are shown below. The 

first equation is the non-unitary transformation of the coordinate space, the second is the L  in the 

transformed space. Once these are known, the dissipative Lagranians and Hamiltonians follow in a 

straightforward way.  It is seen that the variational criterion 0=Lδ produces the expected equation of 

motion in both q -space and Q -space.  All other rules of the formalism are satisfied and H is a 

constant of the motion. For the damped harmonic oscillator: 
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with (2) being the non-canonical connection between physical and transformed space and with

( )tγexp as the expansion factor.   

     The derivation of frictional sL'  and sH ' for a damped particle in a force field and a quadratically 

damped oscillator are now shown.  The equations of motion for the two systems are: 

0=++ αγ qq &&&
 

(7) 

where α is a constant force field and 

022 =++ qqbq ω&&&
 

(8) 

for the quadratically damped oscillator. Their corresponding q -transforms as well as ( )QQL ,&  and 

( )QPH , are shown in table 1.  The frictional sL'  and sH '  in physical space are shown in table 2. 

 

Table 1. 
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Table 2. 

motionofEqn  
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What follows is an explanation in detail as to how the rules of the formalism and related guidelines 

were used to produce the above examples. 

     Example 1:  The damped particle in a force field. The ansatz q -transform is taken to be that for the 

free damped particle as shown in [4] which is then combined with an as yet unspecified function of 

time: 

( )tftqQ +







=

2
exp

γ .
 

(9) 

The use of ( )tf is justified in [5]. The initial ( )QQL ,&  is formed from the generalized potential terms 

that correspond to viscous friction and a constant field, 
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The variation, ( ) 0, =QQL &δ is calculated in the same way as for a conservative system: 
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Equation (9) is differentiated to find Q& and Q&& which are substituted into (11) to convert it to physical 

space: 
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The function ( )tf is determined by setting the differential equation in f in equation (12) to be equal to 

the term that is needed to complete the equation of motion: 
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The general solution for ( )tf is: 
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By using power series expansions of 
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constants 1c and 2c so that the frictional L  and H in q-space properly turn into the expected 

frictionless L  and H  as the viscous coefficient γ vanishes.  We get 
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By adding ( )tf into equation (9) and using the result to convert the corresponding ( )QQL ,& and ( )QPH ,

to real space, ( )tqqL ,,& and ( )tqpH ,, can be determined. 

     Example 2: The quadratically damped oscillator. The ansatz q -transform is taken to be the free 

quadratically damped particle which is derived in [4]: 
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b
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(17) 

The initial ( )QQL ,&  is taken to be: 
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2
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(18) 

There could also be a 22
Qω term but it will be more convenient to leave this out. As a result: 

( ) ( ) 02
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(19) 

After converting the differential to physical space: 

( ) ( ) 0exp
2 =+ bqqbq &&& .

 
(20) 

It is clear that addition of ( )bqq exp
2ω  is needed to complete the equation of motion. Since there is no 

explicit time dependence the q-transform can be inverted so that the needed term as a function of Q is: 

( ) ( )( )11lnexp
2

2 ++= bQbQ
b

bqq
ω

ω .
 

(21) 

The right hands side of (21) can be integrated to find the needed term in ( )QQL ,&  as seen as the 

complicated expression in table 1.  By expanding ( )QQL ,&  in power series it is seen that the 22
Qω term 

is part of the series. After ( )QQL ,&  is converted to real space using the q -transform, it is seen that the 

term 
2

2

2b

ω
− is needed to allow ( )tqqL ,,&  and ( )tqpH ,, to correctly turn into simpler forms as ω or b

vanish. 

 

3. Discussion and conclusion 
Additional combinations of friction and potential can be included into a variational formalism for 

mechanics that includes dissipative forces. The resulting Hamiltonians open up the possibility of 

modeling dissipative quantum systems. The example containing both a force field and viscous friction 

is noteworthy in that it can represent a steady state system as the terminal velocity of the particle in the 

field is reached. A frictional Hamiltonian like this may be useful, for instance, in the modeling 

phenomena such as lasers as is discussed in [7].  Since the dissipative terms of the Hamiltonians 

discussed herein are given as functions of velocity, they are in essence macroscopic and 
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phenomenological in nature.  Frictional forces of this type represent the average interaction of a larger 

environment on a particle or system of particles without all the microscopic details.  Nevertheless, 

such simplifications, if justifiable, can be useful in capturing the larger aspects of a problem while 

reducing the calculational complexity. 
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