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Abstract.
If a black hole can accrete a body whose spin or charge would send the black hole parameters

over the extremal limit, then a naked singularity would presumably form, in violation of the
cosmic censorship conjecture. We review some previous results on testing cosmic censorship
in this way using the test body approximation, focusing mostly on the case of neutral black
holes. Under certain conditions a black hole can indeed be over-spun or over-charged in this
approximation, hence radiative and self-force effects must be taken into account to further test
cosmic censorship.

1. Black holes and naked singularities
Penrose and Hawking have shown that singularities are inevitable in gravitational collapse
[1, 2]. These results do not rely on specific solutions of Einstein’s equations or special
symmetry requirements. Therefore, spacetime singularities are physically relevant and not
simply mathematical peculiarities of special solutions. While the results do not say anything
about the precise nature of the singularities, they do indicate the breakdown of general relativity.
Einstein’s theory is unable to predict the outcome of events in the vicinity of the singularity, and
unusual phenomena could take place there. Visible singularities could provide exciting access to
the so far unobserved physics of quantum gravity.

In the case of a black hole, however, the event horizon hides the singularity. Although this
is a lost opportunity for quantum gravity phenomenology, it is also a blessing, if all we wish to
understand is what can be seen from outside without having to grapple with the physics of a
singularity. But does an event horizon always hide any singularities that form from a collapsing
object? As Roger Penrose first put it in 1969 [3], “does there exist a cosmic censor who forbids
the appearance of naked singularities, clothing each one in an absolute event horizon?” The
conjecture that such a censor indeed exists is called the “cosmic censorship conjecture”.

The physics of event horizons, unlike that of singularities, should be well described by classical
general relativity, so cosmic censorship can be tested and possibly proven without going beyond
known physics. Evidence from several directions suggests that any singularity arising to the
future of generic (not infinitely finely tuned) non-singular initial conditions, may indeed always
be hidden behind a black hole event horizon [4, 5]. However, we are far from having a definitive
proof.

Much of the evidence in favor of cosmic censorship comes from the failure of attempts to
violate it in thought experiments. Given the difficulty of a direct attack on the general question,
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this strategy continues to offer an attractive approach to the problem. Even in the context
of simplifying approximations, such thought experiments can uncover mechanisms tending to
uphold censorship, and they can produce scenarios where censorship would be violated if the
approximations were valid. In the latter case, they focus our attention on those “dangerous”
scenarios and on the limits of validity of the approximation scheme. This type of approach is
what will be discussed here1.

2. “Destroying” a black hole
In general relativity, the spacetime in the vicinity of the black hole is described by the
Kerr–Newman (K-N) metric which contains three parameters: the mass M , the spin angular
momentum J , and the electric charge Q. The K-N metric describes a black hole as long as
the mass is sufficiently large compared to a combination of the charge and angular momentum,
M2 ≥ a2 + Q2, where a = J/M . (We adopt units with Newton’s constant G and the speed of
light c both set equal to unity.) The case where M2 = a2 +Q2 is called an extremal black hole,
while for M2 < a2 +Q2 there is no event horizon and the K-N metric actually describes a naked
singularity. Therefore, it would naively seem that to create a naked singularity all one need do
is to start with a black hole and toss in matter with enough angular momentum or charge so
as to drive its parameters beyond the extremal limit, leaving it no option but to expose the
singularity.

On further thought there are some subtleties involved in such a scenario:

(i) The K-N metric describes stationary configurations, so the proposed strategy can work as
stated only if, after having absorbed the matter, the system settles down to a stationary
configuration containing all the mass, angular momentum and charge, i.e. without having
shed the excess angular momentum or charge in the settling down process. Such an outcome
is by no means guaranteed. Indeed, it seems rather unlikely, given the evidence that the
trans-extremal K-N metric is unstable [8, 9]. If such instability occurs (the uncertainty lies
in the proper boundary conditions at the singularity), the system may well shed sufficient
angular momentum and/or charge, or not settle down to such a metric, and at present
nobody knows what it would do. What this means is that to demonstrate the creation of a
naked singularity one would have to follow the evolution further than the initial “absorption”
of the extra matter. So the possibility of initially overspinning or overcharging an initial
black hole configuration can only be taken as an indication that cosmic censorship might
fail.

(ii) The notion of “exposing” the singularity may be inappropriate, since the singularity inside
a perturbed charged or rotating stationary black hole cannot send signals to any point,
even those interior to the horizon. (Here we assume that the Cauchy horizon inside the
black hole is indeed unstable, as evidence indicates [10].) That is, it has no nonsingular
future. Hence it is not so clear that, if a horizon could be “destroyed”, the result would be
to expose the singularity that would have been there had the horizon not been destroyed.
It might produce a wholly different singularity. Nevertheless, either way the process would
violate cosmic censorship.

Setting these issues aside for the present, we focus here just on the question of whether a black
hole can initially absorb sufficient angular momentum or charge to send its parameters over the
extremal limit.

Given the non-linear nature of Einstein’s equations, following the evolution of a black hole
exactly is a very difficult problem that presumably requires numerical solution of the Einstein

1 This paper is based partially on a talk given by T.P.S. at the 1st Mediterranean conference on Classical and
Quantum gravity following the lines of Ref. [6] and partially on an essay prepared for the “FQXi essay contest:
What is Ultimately Possible in Physics?” [7].
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equation. Therefore, most studies of cosmic censorship to date either imposed symmetry
conditions or have been carried out in the simple framework of a test-body moving on the
black hole spacetime. The test-body approximation imposes the conditions

δE �M, δJ �M2, δQ�M, (1)

where δE, δJ , and δQ denote the energy, angular momentum and charge of the body. These
conditions seem sufficient to ensure that the influence of the test body can be treated as a small
perturbation on the background spacetime. (In particular, we need not assume that δJ � J
or δQ � Q, since addition of angular momentum to a nonspinning black hole, or charge to
a neutral black hole, can perfectly well be a small perturbation.) However, they certainly do
not guarantee that the effects due to the gravity of the body, such as gravitational radiation
and self-force, can be neglected when studying the motion of the body. Issues that arise when
including these effects are are discussed briefly at the end of this paper.

Provided the body can be tossed into the black hole, the final composite object would have
mass M + δE, angular momentum J + δJ and charge Q+ δQ. In order for the K-N metric with
these parameters to be a naked singularity they would have to satisfy the inequality

(M + δE)2 <

(
J + δJ

M + δE

)2

+ (Q+ δQ)2. (2)

Various special cases of such test body experiments have been considered in the literature.
Wald focused on an exactly extremal black hole and showed that it cannot be overcharged
or over-spun using a particle with charge and/or orbital angular momentum. He also showed
that an extremal neutral rotating black hole cannot be overspun using a particle with spin
angular momentum falling along the spin axis [11]. However, de Felice and Yu have shown that
an extremal charged black hole can be sent over the extremal limit by accretion of a neutral
spinning test body [14]. If one starts with a non-extremal black hole, the results differ from what
Wald found for the extremal case. In particular, Hubeny showed that one can overcharge a near-
extremal Reisser–Nördstom black hole by tossing in a test body [12], and Hod showed that a
near-extremal rotating black hole can be overspun in the limiting case where a particle carrying
angular momentum is lowered all the way to the horizon of a black hole and dropped from there
[13]. We will return to these results later on and comment on them more extensively. A case
we will not consider further is that of dyonic black holes which carry both electric and magnetic
charge [15, 16]. We will also not consider here test field experiments via wave scattering, classical
or quantum, as discussed for example in [17] and references therein.

Astrophysical black holes tend to increase their angular momentum by accreting matter,
whereas they tend to decrease their charge by attracting opposite and repelling same charges.
For a point of principle, one may ignore these facts, but nevertheless it would be much more
provocative and promising if arguments showed that a naked singularity could be created using
only angular momentum, since that might then actually occur in nature. We therefore focus
mostly on the case were the both the black hole and the test body have only angular momentum
and no charge.

We shall demonstrate that in the test body approximation a trans-extremal condition can be
attained, even when taking into account constraints on the size and structure of the body. The
limitations of the test-body approximation will then be addressed.

2.1. Over-spinning a neutral black hole
With Q = δQ = 0, the inequality in eq. (2) takes the form

J + δJ > (M + δE)2. (3)
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This yields a lower bound on the required angular momentum carried by the body, for a given
energy δE:

δJ > δJmin = (M2 − J) + 2MδE + δE2. (4)

Since we are assuming δE �M , it might seem that the δE2 term may as well just be neglected
at this stage. However, as we will see shortly, the presence of that term imposes an upper bound
on δE and δJ and, therefore, should not be neglected.

We can already extract a useful piece of information from eq. (4). Dividing both sides by
δE2, and observing that each term on the right hand side is positive and therefore should by
itself be smaller that the left hand side, we get

δJ/δE2 > 2M/δE � 1 (5)

(where the last inequality follows from (1). If δE is comparable to the rest mass of the body (it
can be much less if the body is deeply bound by the gravitational field of the black hole), and if
δJ comes from spin (rather than orbital angular momentum), this would imply that the body
has angular momentum far over the extremal ratio. In that case the body could not be a black
hole. This does not mean that it would have to be a naked singularity itself, as there is no a
priori upper limit to this ratio for bodies other than black holes. Stars for instance can easily
have ratios much larger than 1.

The requirement that the composite object be a naked singularity gave us the lower bound
(4) on the angular momentum of the body. An upper bound is obtained from the requirement
that the body does indeed cross the horizon. One can use the equations of motion for the body
in order to derive the bound [11]. These are the Papapetrou equation if the body’s angular
momentum includes spin, and the geodesic equation if it is purely orbital angular momentum.
But a simpler and more transparent method is to just consider the flux of energy and angular
momentum into the black hole when the body falls across the horizon. The requirement that
the energy momentum tensor satisfies the null energy condition (which follows for example if
the energy density is positive in all local reference frames) yields (see for example [6])

δE ≥ ΩHδJ, (6)

where ΩH = a/2Mr+ is the angular velocity of the horizon and r+ = M + (M2 − a2)1/2 is the
horizon radius in Boyer-Lindquist coordinates. This condition can be written as

δJ ≤ δJmax =
2Mr+
a

δE. (7)

It guarantees that the body can fall across the horizon starting from some point outside, although
in general the body is in a bound orbit that does not come from spatial infinity.

We now have both an upper and a lower bound for the angular momentum of the body,
for a given energy. As long as δJmin < δJmax for some δE, there will be values of δJ and δE
satisfying both inequalities (4) and (7).

First let us suppose the black hole starts exactly extremal, i.e. J = M2. Then a = M = r+,
so one has δJmin = 2MδE + δE2 and δJmax = 2MδE. This implies that δJmin > δJmax so
it is impossible to over-spin the black hole. Thus we recover the result of Wald [11] mentioned
earlier. (The analysis here is significantly simpler than that of Ref. [11].)

The physical interpretation of this result is the following: In the case of the spinning body,
the spin-spin interaction with the spin of the black hole is sufficiently repulsive to prevent the
body from falling in if it would have overspun the black hole. In the orbital angular momentum
case, If the body has the angular momentum required to overspin then the impact parameter of
the body is too large for it to hit the horizon.
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In the sub-extremal case, however, the inequalities can be satisfied, as was shown in [6]. As
mentioned earlier, the limiting case where the body is dropped from a point on the horizon had
been considered previously by Hod [13] (it corresponds to δJ = δJmax). To understand the range
of overspinning parameters, it is helpful to visualize the inequalities graphically. If δJmax and
δJmin are plotted vs. δE, the former is a straight line through the origin, with slope 2Mr+/a,
while the latter is a parabola with positive intercept, slope 2M at the intercept, and curved
upwards. For a sub-extremal black hole we have r+ > M > a, so the slope of the δJmax line
is greater than the initial slope of the δJmin parabola. Some algebra reveals that the parabola
always intersects the straight line in two points. The allowed values of δE and δJ are those
in the compact region above the parabola and on or below the straight line. Note that if the
δE2 term is neglected in (4), the parabola is replaced by a straight line, and the allowed region
becomes an infinite wedge, with no upper bound.

To determine whether the overspinning can be accomplished with a small perturbation
satisfying (1) we can expand in the dimensionless quantity ε defined by

J/M2 = a/M = 1− 2ε2. (8)

(Hubeny [12] used the same parameter to analyze the charged case, see below.) The parameter
ε measures how close to extremality the black hole is to begin with, . and we must have ε� 1
if the overspinning perturbation is to be small. It is now useful to adopt units with M = 1, to
keep the expressions simpler. Then we have, from (4) and (7),

δJmin = 2ε2 + 2δE + δE2 (9)

δJmax = (2 + 4ε)δE, (10)

where terms of order O(ε2δE) have been dropped in (10). The allowed range of δE lies where
the difference

δJmax − δJmin = −2ε2 + 4εδE − δE2 (11)

is positive, i.e.
(2−

√
2)ε < δE < (2 +

√
2)ε. (12)

In particular, δE must be of order ε. For a given δE, the allowed values of δJ are near 2δE, so
we must have

δJ ∼ δE. (13)

We conclude that if ε � 1 the overspinning values of δE and δJ can indeed be consistent
with the perturbative requirement.

Note that the width (11) of the allowed range of δJ is only of order ε2 � ε. Note also that
a − 1 = 2ε2 is parametrically smaller than ε. For example, if ε = 10−2, then the initial black
hole must have a = 0.9998. For a thought experiment, we can imagine even smaller values of ε.

2.2. Over-charging or over-spinning a charged black hole
Let us return to similar conclusions reached in the cases mentioned earlier, where different
assumptions for the quantities characterizing the black hole were made. Hubeny considered the
case of adding charge to a charged black hole (J = δJ = 0) [12]. In analogy to the spinning
case, in the charged case the two constraints are

δQ > M −Q+ δE, (14)

δQ ≤ r+
Q
δE, (15)
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where now r+ = M +
√
M2 −Q2. If the black hole starts out extremal, M = Q = r+, then

overcharging is impossible. However if M > Q, then r+ > Q, and one easily sees by visualizing
the inequalities graphically (now they are both straight lines) that there is an infinite range of
solutions, once δE is greater than a certain minimum value.

de Felice and Yu considered the case of adding angular momentum to an extremally charged
black hole (Q = M , J = δQ = 0) [14]. . In this case the minimum δJ to overspin is given by

δJ > (M + δE)
√

2MδE + δE2, (16)

and there is no maximum δJ , since the only requirement for the body to fall across the horizon
is δE ≥ 0, which does not involve δJ . Note that to lowest order in δE/M the minimum
overspinning δJ is δJmin = M

√
2MδE.

3. Size and structure requirements
So far we have characterized the body only by its energy δE, angular momentum δJ and charge
δQ. We did not consider restrictions placed on its size and structure: It should be sufficiently
small to justify use of a test particle approximation, and it should be composed of matter having
positive energy density and no unphysically large stresses. The next step is to take into account
these requirements.

3.1. Adding spin angular momentum to a neutral black hole
We begin with the case of a spinning test body. For simplicity we assume that the body is
dropped along the rotational axis of the black hole. We first consider the case where the body
has δE ∼ m, and is not spinning relativistically, so its spin angular momentum is given by
δJ ∼ mvR ∼ δE vR, where v is the surface velocity and R is the equatorial radius. The
condition v < 1 then implies R > δJ/δE. We saw above that the ratio δJ/δE must be of
order unity (13), that is of order M . In this case the body must be larger than the black hole,
so it simply will not “fit” in the transverse direction, and in any case treating it as a point
particle with spin would be unjustified, since that rests on the smallness of the size of the body
compared to the ambient radius of curvature. Moreover, one can show [6] that the radial tidal
stress required to hold the body together would be larger than the energy density, violating
energy conditions. It cannot help to allow ultra-relativistic tangential velocity: as a simple
Newtonian estimate shows, that would require unphysical stresses holding the body together.
The conclusion is that it is impossible to over-spin the black hole if the body’s energy is close
to its rest mass, δE ∼ m.

Since the angular momentum involves the rest mass m, not the energy δE, it might be
possible to achieve a large enough δJ with a small enough size R, without requiring unphysical
matter, by dropping the body from a position where it is deeply bound, δE � m. This might
be achieved by slowly lowering the body on a tether, down to the near the black hole horizon,
before dropping it in. Now we reconsider whether the size restrictions can be met in this setting.

We begin with the restrictions on the rest mass m. If m is much greater than δE, then the
test body approximation requires that we impose not only δE � 1 (= M) (1), but also m� 1.
There is also a lower bound on m, coming from an upper bound on R: the angular momentum
is δJ ∼ mvR, hence (restricting to nonrelativistic spin v < 1 as required by the previously
mentioned result) R > δJ/m ' 4ε/m. The requirement R � 1 then yields m � ε. The mass
and size must therefore fall within the ranges

ε� m� 1, 4ε/m <∼ R� 1. (17)

To these conditions we must add the requirement R >∼ m that the body is not a black hole, as
explained above.
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The inequality (6) guarantees that the body can cross the horizon with the chosen values of
energy and angular momentum, but since the deeply bound drop point lies at a finite distance
from the horizon it is necessary to check that (a) the spinning body would actually fall into the
black hole rather than being repelled, and (b) it is possible to choose the polar radius of the
body Rpolar to be smaller than the proper distance d from the horizon to the drop point

Rpolar < d, (18)

so that it can fully “fit” outside the black hole and be localized at the drop point. Now it turns
out [6] that, in order to fall in, the maximum value that d can have, given the allowed values of
δE and δJ , is

dmax ' ε/m. (19)

Thus we arrive at the bound
Rpolar < ε/m. (20)

Together with (17), this means that the body must be at least somewhat oblate, Rpolar
<∼ R/4.2

We conclude that the body can be large enough to possess the requisite angular momentum and
also have a physically acceptable stress and fit outside the black hole at the drop point3.

3.2. Adding orbital angular momentum to a neutral black hole
We turn now to the case of orbital angular momentum in the equatorial plane. Here the issue is
that in order to have the required values of δE and δJ , the body might have to be in a bound
orbit, which would have a turning point at a maximum radius. In that case we would need
to require that the body be small enough to fit outside the horizon at this radius. Since the
body can be no smaller than a black hole with the same rest mass, it is not clear in advance
whether this requirement could be met. However, as has been shown in [6] this size constraint
is not an issue, since in fact there are suitable orbits that come in from infinity with no turning
point. This can be shown numerically, but also analytically by the use of the effective potential
governing the motion of a test particle in a Kerr spacetime (Kerr-Newman with no charge).

3.3. Cases involving a charged black hole
Let us briefly consider the size and structure requirements when attempting to overcharge or
overspin a charged black hole. In the case with no angular momentum Hubeny [12] showed that
the body can have the required charge and mass, with low internal stresses and size much smaller
than the black hole. Also, she demonstrated that there are charged test particle trajectories that
fall from infinity into the black hole. Therefore, much like the orbital angular momentum case,
size constraints are not an issue. On the contrary, for spinning particles dropped radially with
radial spin into an extremal charged black hole, de Felice and Yu [14] found that the test
body must be bound very close to the horizon. The same is true for a particle carrying orbital
angular momentum but no spin, as we now show. The radial motion is governed by the equation
ṙ2 + (1 − 1/r)2(1 + L̃2/r2) = Ẽ2. Here ṙ is the derivative of the Reissner-Nordstrom radial
coordinate with respect to the particle proper time, and Ẽ = (δE)/m and L̃ = (δJ)/m are the
energy and and angular momentum divided by the particle rest mass m, and we have again set
M = 1. As mentioned after (16), the overspinning requirement is δJ/δE >∼

√
2/δE � 1, hence

2 In [6] the possibility that Rpolar 6= Requator was overlooked, so it was erroneously concluded that no value of R
could meet all requirements.
3 de Felice and Yu made a similar analysis for the case of dropping a spinning body into an extremal charged
black hole, but they computed the coordinate radius corresponding to dmax, rather than the proper distance. In
the extremal case, the proper distance to the horizon is infinite in the direction orthogonal to the Killing vector,
so there is apparently no requirement that the body be disk-shaped, contrary to what was stated in [14].
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L̃/Ẽ � 1. For an unbound orbit Ẽ ≥ 1, so we infer that L̃� 1. There are therefore two turning
points where ṙ = 0. To fall into the hole the particle must lie inside the inner turning point,
which lies at a radius rinner very close to the horizon, where rinner − 1 ' Ẽ/L̃ <∼

√
δE/2 � 1.

However, although the radial coordinate must be very close to that of the horizon, the proper
distance to the horizon, measured in the static frame, is infinite for an exactly extremal black
hole. Hence, in both the spin and orbital cases, no further size constraints appear to be imposed
by the location of the turning point (see also footnote 3).

4. Beyond the test body approximation
Our considerations thus far have been based on an approximation which neglects loss of energy
and angular momentum in gravitational radiation and does not take into account self-force
effects. Recall that our purely kinematic considerations above yielded a finely tuned relation
between the energy and angular momentum of the dropped body for over-spinning to occur. Both
quantities have to be of order ε in magnitude, but the allowed window for angular momentum,
given the energy, is only of order ε2. In the light of this delicate balance, it is certainly possible
that, although small, gravitational radiation and/or self-force effects may always manage to
preclude the over-spinning.

Given that the inequalities (4) and (7) need only hold on the horizon, one could imagine that
the loss of energy and angular momentum in gravitational radiation might be compensated by
adjusting the initial conditions. In the case of an axially symmetric spinning body falling along
the black hole spin axis there is no radiation of angular momentum, so it should be possible
to simply compensate for the energy radiated. To determine whether compensation is actually
possible in the orbital case requires further investigation. Perhaps more worrisome than radiation
are the self force effects. Indeed Hubeny found strong indications that for the charged case the
electromagnetic self-force might prevent the overcharging, although her calculations were not
conclusive [12].

Another distinct effect that might prevent the creation of a naked singularity is the tides
raised on the black hole horizon by the falling body. These would be irrelevant for the orbital
angular momentum case since the body falls in from spatial infinity. In the spinning body case,
however, in which the body is lowered to the horizon and then dropped, the tidal bulge of the
horizon might perhaps make it impossible for the body to start out in the exterior while still
satisfying the size constraints.

Given the existing evidence for cosmic censorship, it seems indeed likely that neglected
gravitational effects will come to its rescue. The examples discussed here suggest dynamical
regimes in which it may be interesting to study these neglected effects.
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