
Journal of Physics: Conference
Series

OPEN ACCESS

Organization, management, and documentation of
ATLAS offline software releases
To cite this article: S Albrand et al 2010 J. Phys.: Conf. Ser. 219 042012

View the article online for updates and enhancements.

You may also like
Operation of the ATLAS trigger system in
Run 2
The ATLAS collaboration

-

The scientific potential and technological
challenges of the High-Luminosity Large
Hadron Collider program
Oliver Brüning, Heather Gray, Katja Klein
et al.

-

ATLAS: A High-cadence All-sky Survey
System
J. L. Tonry, L. Denneau, A. N. Heinze et
al.

-

This content was downloaded from IP address 3.135.185.194 on 25/04/2024 at 20:21

https://doi.org/10.1088/1742-6596/219/4/042012
https://iopscience.iop.org/article/10.1088/1748-0221/15/10/P10004
https://iopscience.iop.org/article/10.1088/1748-0221/15/10/P10004
https://iopscience.iop.org/article/10.1088/1361-6633/ac5106
https://iopscience.iop.org/article/10.1088/1361-6633/ac5106
https://iopscience.iop.org/article/10.1088/1361-6633/ac5106
https://iopscience.iop.org/article/10.1088/1538-3873/aabadf
https://iopscience.iop.org/article/10.1088/1538-3873/aabadf
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjssrcg-n2uUNWvUahB9iG6RsCVKpvO8b9ZCWGOjLV-Jx1whQN8o9MG_A1zckJoFSM44dP62OkN8ywk81ls2qNM4ejjoGmA7xYKuThAWtcl3uMy6BvRoFpf5MEFdVJz3XBcx9ASGgFy5Qdy4lmqdZBFRsJSRUzZsUyn30YryHE2BmufsO3zzcCVWBNqqf5lWtTFFGsxyjJReFLMxv_UFgS1Ti7fYNYcKRDpY98aqlAq8J-9rdyCDJDsKHiaMnerbbMY16DiBZtvHPe5kzj-7MG13e7Om1m7MA5OX-bMyLznA-gSyDbC8M0xlaAb-ocDPaOdZ00_SkZt8QI1GX9NyNj3g&sig=Cg0ArKJSzJe7zPVNcK0w&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA

Organization, Management, and Documentation of ATLAS
Offline Software Releases

S Albrand1, N Amram2, K Black3, K Ciba4, A de Salvo5, J Fulachier1, M Gallas
Torreira6, S Haywood7, V Jain8, I Kachaev9, F Lambert1, S L Lloyd10, F
Luehring8,21, E Moyse11, E Obreshkov12, A Pacheco Page6,13, D Quarrie14, G
Rybkine15, P Sherwood16, B Simmons16, A S Thompson17, A Undrus18, H von der
Schmitt19, S Youssef20, O Zenin9

1LPSC/CNRS-IN2P3/UJF /INPG, 53 avenue des Martyrs, 38026 GRENOBLE
CEDEX France
2Ramat Aviv, Tel Aviv 69978, Israel
3Harvard University, 18 Hammond Street, Cambridge MA 02138 USA
4AGH-University of Science, (FPACS AGH-UST) al. Mickiewicza 30, PL - 30059
Cracow, Poland
5Università La Sapienza, Dipartimento di Fisica, Piazzale A. Moro, IT - 00185 Roma,
Italy
6CERN, CH - 1211 Geneva 23, Switzerland
7RAL, Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
8Indiana University, Bloomington IN 47405-7105, USA
9IHEP, Moscow Region, RU - 142 284 Protvino, Russia
10Queen Mary University of London, Mile End Road, London E1 4NS, UK
11University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
12DESY, Hamburg and Zeuthen, Notkestr., D-22603 Hamburg, Germany
13IFAE, Edifici Cn, Universitat Autònoma de Barcelona, ES - 08193 Bellaterra
(Barcelona), Spain
14LBNL, MS50B-6222, 1 Cyclotron Road, Berkeley CA 94720, USA
15LAL, Univ. Paris-Sud, IN2P3/CNRS, Orsay, France
16University College, Gower Street, London WC1E 6BT, UK
17University of Glasgow, Glasgow G12 8QQ, UK
18BNL, Upton, NY 11973, USA
19Max-Planck-Institut für Physik , Föhringer Ring 6, 80805 München, Germany
20 Boston University, 590 Commonwealth Avenue, Boston MA 02215, USA

E-Mail: Fred.Luehring@cern.ch

Abstract. We update our CHEP06 [2] presentation on the ATLAS experiment software
infrastructure used to build, validate, distribute, and document the ATLAS offline software.
The ATLAS collaboration's computational resources and software developers are distributed
around the globe in about 35 counties. The ATLAS offline code base is currently over 7

21 To whom any correspondence should be addressed.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042012 doi:10.1088/1742-6596/219/4/042012

c© 2010 IOP Publishing Ltd 1

million source lines of code in 10,000+ C++ classes organized into about 2,000 packages.
More than 400 developers contribute code each month. Since our last report, we have
developed a powerful, flexible system to request code versions to be included in software
builds, made changes to our software building tools, increased the number of daily builds used
to validate significant code changes, improved the tools for distributing the code to our
computational sites around the world, and made many advancements in the tools to document
the code.

1. Introduction

1.1. ATLAS
The ATLAS (A Toroidal LHC ApparatuS) Error! Reference source not found. project is one of the
biggest collaborative efforts ever undertaken in the sciences: about 2,800 physicists and 1,000 students
participate. The participants are drawn from more than 200 universities and laboratories in about 35
countries. The Large Hadronic Collider (LHC) provides beams of protons that collide and generate
hundreds of subatomic particles 40 million times per second. The LHC is a facility at CERN, the
European Organization for Nuclear Research, located near Geneva, Switzerland. The large scale of the
ATLAS offline software is driven by the complexity and scope of the ATLAS detector.

1.2. Collaborative Nature of the ATLAS Offline Software
The offline software effort is a collaboration of physicists, students, and computing professionals
drawn from throughout the ATLAS collaboration. Currently ATLAS has over 800 people registered as
offline software developers with approximately 400 developers submitting new or revised code each
month. The ATLAS offline code base has approximately 7 million lines of code organized in
approximately 2,000 packages. The main code languages used are C++ and Python with significant
amounts of code written in Fortran/Fortran 90, SQL, PERL, and Java. Since May of 2000 there have
been 15 major production releases of the ATLAS offline software and hundreds of development
releases. It is the responsibility of the Software Infrastructure Team (SIT) to maintain this code base
and build the ATLAS offline software (Athena). Note that while the ATLAS shares much of its code
between the online and offline code efforts this paper describes work on the offline software.

2. The Software Infrastructure Team

2.1. Membership of the SIT
The SIT is made up of approximately 30 people: physicists, computing physicists, students, and
computing professionals. While there is a core of four people who are dedicated to (and paid by) the
ATLAS project, most SIT members are volunteers who spend a relatively small fraction of their time
working on SIT-related activities. We estimate that the total effort on the SIT is equivalent to about
12 FTEs. Mirroring the ATLAS software developer community, the SIT members are spread
throughout Europe, Israel, and the US with the dedicated personnel being at CERN. The part-time
personnel and their institutes generally receive credit from the ATLAS collaboration for doing this
service work.

2.2. Organization of the SIT
The SIT has a simple organization with a single physicist who serves as convener and organizes the
effort. In addition one of the ATLAS software project leaders serves on the SIT and looks after the
portions of the work based at CERN. The SIT has face-to-face meetings approximately quarterly at
ATLAS software workshops and biweekly phone conferences in addition to hundreds of e-mail
messages each week. Frequently the project leader and convener work to find additional people to
cover new tasks that arise over time. In general this works very well and tasks get successfully

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042012 doi:10.1088/1742-6596/219/4/042012

2

completed but the SIT activity is always a little short of having the full number of people needed to do
everything required. The SIT activity is generally organized around the ATLAS offline software
release schedule.

3. ATLAS Offline Software Releases

3.1. Software Organization
In addition to the large number of developers and the large amount of code, the SIT is supporting
several versions (releases) of the software because of requests from different communities within
ATLAS. Many different ATLAS communities use portions of the offline software for their own needs
and want to modify “their” part of the code without being affected by changes made by other groups.
For example, a group working on reprocessing cosmic ray data, may not want changes that trigger
community wants and vice versa. Having releases for different groups puts a large stress on the SIT
because often priorities conflict between the various groups. In addition, new versions of external
packages (e.g. ROOT, GEANT) need to be included in the software from time to time. To
accommodate the needs of the developer community, the SIT builds many different versions of the
ATLAS software each day.

Each software version is organized into about 10 software projects and these projects in turn
contain about 2,000 software packages. A package is always maintained in a single project and
organization of the project and packages serves to both define and provide a logical structure for the
software dependencies. Examples of projects are core software, simulation, and reconstruction. The
projects are organized to reflect the order of the ATLAS offline data processing chain. Figure 1shows
the project dependencies for the ATLAS offline and online software projects. There are also container
packages that group packages so that they correspond to parts of the ATLAS detector (Inner Detector,
Calorimeter, etc.) and have different hierarchy then the software projects. A package is also in a single
container but the structure from these container packages spans multiple projects (e.g. the Inner
Detector has packages in many projects: simulation, reconstruction etc.)

Figure 1 The project dependencies for the ATLAS offline and online software. The SIT is responsible for the
projects between AtlasCore and AtlasProduction / AtlasTier0.

3.2. Release Strategy
The SIT has moved to a complex strategy for releasing many versions of the offline code developed in
parallel. Originally [1], our scheme consisted of builds each night, a series of development releases
each month, a candidate production release each six months, and then a rapid series of bug-fixing

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042012 doi:10.1088/1742-6596/219/4/042012

3

releases based on the candidate release until production-quality code was achieved. Under this
scheme, we would at times have two branches active: the bug-fixing branch for a particular release
that was accepting only fixes to known bugs in the candidate production release, and the next
development release that was open to allow development of new features in the code. However it was
realized fairly quickly that this scheme was inadequate for large collaboration like ATLAS where
there is a need to have a usable version of the nearly latest code each day to develop against and where
many development efforts are being made in parallel[3].

Figure 2 Display from the NICOS system showing the results of one day’s builds and ATN tests.

Therefore additional nightly releases were added. Firstly a validation (trial) nightly was added for
testing proposed new code before the new code could be put into the development (candidate) nightly.
This allowed the development nightly to be usable most mornings for test and development while at
the same time providing a way to test new code. Secondly daily builds were added for such things as
the 64 bit platform, the SLC5 operating system, and the gcc 4.3.2 compiler (currently, our production
builds are on SLC4/32 bits/gcc 3.4.6). Thirdly many nightly builds designated as migration builds
were added for testing larger, invasive changes to the code for specific purposes. These additional
migration nightly releases were added to allow several developer communities to work on potentially
disruptive migrations without adversely impacting the primary nightlies. As their name suggests the
intention is that such migrations eventually be merged into the primary nightly releases. This added
flexibility to the release building strategy at the expense of occasionally needing to expend a
significant amount of work to combine the various parallel code versions into a single, fully-functional

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042012 doi:10.1088/1742-6596/219/4/042012

4

version of the offline code. Figure 2 shows one day’s builds and illustrates the large number of builds.
An automatic tag “sweeping” process is invoked from time to time to copy new package versions from
the various builds into a production candidate release. The object of tag sweeping is to keep the
various software versions from diverging. In addition to release builds, a scheme was added to allow
for a reasonable number of runtime patches to be applied to the code. The runtime patches can change
source code (C++, Python, etc.) but not header files that would require recompilation of client
packages.

Currently ATLAS is building about 30 releases each night with most releases having both an
optimized and a debug version built which results in a total of about45 builds. ATLAS is currently
using 44 servers containing a total of 220 CPU cores to build the releases. In spite of the complexity of
the current scheme we are handling the release building well.

3.3. Multiple Releases and Coordinators
Our way of managing multiple releases is to have multiple release coordinators: one per open release.
A release coordinator is responsible for planning the goals of a release, deciding what new code
versions (“new tags”) are allowed into the release, validating that the newly submitted code works
properly, and checking that the release is capable of providing the desired functionality. Currently as
ATLAS scales up for LHC running there are typically four or five releases open (not counting
migration builds) each with its own release coordinator. In particular, the release coordinators are
responsible for accepting submitted code from the validation release to the development release.
ATLAS also has two release building shifters available at most times, so that the release coordinators
can ask for an official build of their release even on weekends and evenings. For important releases
(i.e. those that will be used for major productions), the software project coordinators, validation
managers, chief architect, and other responsible representatives must sign off before a release is built.
Weekly Global Release Coordination (GRC) meetings attended by representatives of all concerned
parties are held. In addition to looking at the status of the progress toward the release, the GRC
meeting also looks at the relative priority of the various pending releases.

Even with aggressive release coordination and extensive validation, it takes time and multiple
iterations to get a final production version of the software release. Two mechanisms exist for adding
adjustments and corrections to stable releases:

1. Patch releases that allow the software to patch itself at runtime (this does not require a full
rebuild of the release). For a given candidate release, patch releases are issued at two week
intervals with each patch release being a superset of the previous releases.

2. Bug-fixing releases that are full releases built using all of the fixes in the most recent patch
release. This results in faster startup of the offline software by compiling in the patches during
building rather than applying them on the fly at the start of a job.

Even with these two patching mechanisms, it is a constant struggle to meet the release schedule.
Meeting the schedules is the SIT’s toughest job.

4. ATLAS Software Release Tools
The SIT uses a number of tools to build, test, and distribute the SW (see Figure 3):

1. CVS – the code repository that holds the code submitted by the developers [4].
2. Tag Collector – manages which software packages and versions are used in the release [5].
3. CMT – manages software configuration, build, and use [6].
4. NICOS – drives nightly builds of the ATLAS software [7].
5. Scripts – convert selected nightly builds into official releases.
6. Validation Tools – five systems validate the software builds [9][10][11][10].
7. Packaging & Installation Tools – create & install the software distribution kit [12][12].

In addition to the above tools, we also use Doxygen [14] to document our code automatically, a
TWiki [15] for written documentation, and three Workbooks [16] to teach developers/users how to
use the software.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042012 doi:10.1088/1742-6596/219/4/042012

5

Figure 3 The arrangement of the ATLAS tools.

4.1. Software Building Tools

4.1.1. Tag Collector
The Tag Collector (TC) [5] tool allows developers to select which code version (tags) in the CVS
repository will be included in the release. To be clear, a “tag” is a user-named version of a code
package. The tagging of code versions is done within CVS. The TC has been improved to support the
complicated ATLAS build environment. The TC is working well and is still being evolved to include
new features.

Since our report at CHEP06 [2], the following features have been added to TC:
• The ability to group a number tags into a “bundle” that must be approved or rejected jointly.

This new feature deals with dependencies between new tags and saves lots of error-prone and
laborious manipulation of the list of selected tags when a change requires updates to more
than one software package.

• Developers can ask a release coordinator to approve a tag or bundle for inclusion in the
development version nightly (i.e. accept that a tag has been successfully validated).

• Developers can record whether tags passed validation tests after checking the tests. This saves
the release coordinators from having to check the test of every package in a bundle and
provides a record of when and who checked the validation tests.

The TC is coded in Java and built on the ATLAS Metadata Interface (AMI) application[17].

4.1.2. Configuration Management Tool
The Configuration Management Tool (CMT) [6] is based on management conventions that use
package-oriented principles. CMT does the following:

• Structures software packages: which project a package belongs to, name, and version.
• Structures software projects: location, order in projects hierarchy, packages, and strategies.
• Defines development work models: project management, development and integration work.
• Identifies the elements of the build configuration: projects, packages, applications, libraries,

actions, and context.
• Defines recurrent patterns in configuration management: where to install software, how to

build shared libraries on many platforms, etc.
• Queries the knowledge base to parameterize the development tools using this syntax:

> cmt show macros, uses

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042012 doi:10.1088/1742-6596/219/4/042012

6

> cmt broadcast [OPTIONS]... COMMAND
• E.g., build the release with one command: cmt broadcast make
• Identifies and describes the activities of the software production (building, testing,

deployment).
The way that users, developers, and release builders interact with CMT is through text files called

requirements and projects files. These files provide a description of the package and project
dependencies that allow CMT to construct appropriate makefiles to build the release. Each CMT
software package contains a requirements file in a subdirectory called cmt/. Using these
requirements files CMT is able to build the entire release in the correct order so that packages
that depend on other packages are compiled in sequence. ATLAS has developed a tool called checkreq
[17] that checks that the contents of the requirement files match the include statements in the source
code and also checks for various syntactical errors in the requirements files.

4.1.3. Nightly Control System
The NIghtly COntrol System (NICOS) tool [7] uses CMT to build many different versions
(“branches”) of the ATLAS offline software each night (and some in day too!). NICOS also runs user-
defined validation tests on the newly built software (see details in the next section). At the time of this
report, ATLAS is making about 45 builds every 24 hours and significant work has gone into scaling
up NICOS to handle the large number of builds, as well as into making NICOS flexible; a recent
major improvement NICOS uses the AMI database to store the configuration of each nightly build.
The web pages that NICOS uses to present the build results and ATN [8] test results (see section 4.2.1.
) have been improved to make it easier for the release coordinators and developers to spot problems
and investigate them. Considerable thought has gone into the usability of these web pages. Since AMI
also underlies the Tag Collector, integration between NICOS and the Tag Collector is improved.

4.2. Software Validation Tools

4.2.1. Introduction
ATLAS uses several tools to validate the building and the installation of its software:

• AtNight (ATN) testing [8] is integrated into NICOS and runs over 300 “smoke” tests for most
branches during the nightly builds. ATN can test a single routine or the functionality of
simulation, reconstruction, or trigger on a few events.

• Full Chain Testing (FCT) [8] checks the entire ATLAS offline software chain (event
generation, simulation, digitization, reconstruction, and analysis) and is run once a day.

• Tier-0 Chain Testing (TCT) is used to check that the ATLAS software is installed and running
correctly at the Tier-0. This testing is very similar to the FCT except it applies to the software
installed the CERN Tier-0 site where the software release is updated much more frequently
then the production offline release run on the Grid.

• Run Time Tester (RTT) [9] runs an extensive list of user defined tests against all of the
software projects for 10 different builds each day. Currently the RTT system will only test the
packages in one project but it is being upgraded to incorporate the full-chain testing
functionality of the FCT and TCT. The RTT tests can be quite lengthy and run for several
hours. Further details are in the next section.

• Kit Validation (KV) [10] is a standalone package that is used to validate that the production
version of the ATLAS software is installed and functioning correctly on all ATLAS Grid
production sites (Tier-1/2/3).

The release coordinators actively monitor each day’s test results to see if new tag bundles can be
promoted to candidate production releases and check that the candidate production release is working.

4.2.2. The RTT Software Validation System

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042012 doi:10.1088/1742-6596/219/4/042012

7

The Run Time Tester (RTT) system [10] is the most intensive validation tool for ATLAS offline
software. The RTT system runs a number of validation tests against 10 software builds each day with
each build undergoing between 10 and 500 test jobs. The user defines each test with XML statements
and supplies the necessary data files. The RTT test jobs can run for several hours. It is foreseen that
some RTT tests could run for several days but currently this is not the case. Recently the RTT has
been running ~1300 test jobs each day. The RTT system is written in Python and uses a dedicated
cluster to run the validation tests. The cluster has a pool of 13 servers to schedule the test jobs and 368
cores to run the test jobs. Additional scheduling cores are currently being brought online. The RTT
also needs a small disk pool of 1.4 TB of AFS-mounted disks. The RTT system is highly scalable: if
more tests are needed or more releases need testing, the RTT team can (and has!) added more nodes to
the pool of servers used by the RTT system. The results of the tests are available on a website and log
and output files can easily downloaded for further examination.

4.3. Software Distribution Tools
The ATLAS distribution kit is designed to install and manage the offline ATLAS software as well as
the required external software. It is used at the ATLAS experiment site, ATLAS trigger computing
clusters, on AFS at CERN, all collaborating institutes, and also beyond the collaboration at all the Grid
sites providing resources to ATLAS. The distribution kit is built with the CMT-based packaging tools.
The distribution kit is installed for offline use with the Pacman installation tool.

4.3.1. CMT-Based Distribution Kit Packaging Tools
The ATLAS software distribution kit packaging system, PackDist, is a CMT package including a suite
of scripts [12]. The system uses the CMT query mechanisms to visit the package tree, to retrieve the
configuration/meta-data parameters, and to generate the distribution kit as a set of packages in various
packaging systems formats (e.g. Pacman). Packaging within the kit is done at the granularity of CMT
projects for faster building and installation. Each packaged project is sub-divided into platform-
dependent, platform-independent, source, and documentation parts. The needed external software
packages are also packaged and the ATLAS project packages are made dependent on them. It is
possible to install selected platforms and/or the source code. The SIT typically provides the kit for a
core set of widely used platforms. With minor modifications made by users, the kit installations work
on many additional platforms beyond the platforms officially supported by the SIT. The distribution
kit is built for every official full or patch release and for the majority of nightly releases.

Typical CMT usage during nightly builds:
> cmt make run CMT drives distribution kit build procedure (for a full release)
> cmt make installation CMT drives distribution kit installation process by installing the

latest Pacman version and setting up the use of Pacman to install
the newly built kit.

4.3.2. Pacman
ATLAS has used Pacman [13] to install the offline software for the past several years. The installation
has been done using Pacman caches, mirrors, and snapshots. Recently we have been prototyping using
“pacballs” to install the software. A pacball is a self-installing executable created using Pacman. It
includes the ATLAS distribution kit for a particular release and a Pacman version. The pacball has an
associated md5sum that is recorded in the pacball filename. Calculating the md5sum on a downloaded
pacball allows a site downloading it to check that the pacball is not corrupted. ATLAS pacballs come
in two sizes: Large (~3 GB) for full releases (development, production, and bug-fixing) and small (50-
200 MB) for the patch releases that are applied on top of a full release.

The ATLAS pacballs are designed to install the offline ATLAS software anywhere from individual
laptops to large production clusters. The pacballs are distributed using both a web server and the
ATLAS DQ2 data distribution system. After being created at the ATLAS CERN-based Tier-0, all
pacballs are propagated to all ATLAS Tier-1 sites. The Tier-0 site has two copies of the ATLAS

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042012 doi:10.1088/1742-6596/219/4/042012

8

installation: one that is created during the building of ATLAS release and one that done in the same
way using pacballs that all other sites install the software.

4.4. Documentation Tools

4.4.1. Doxygen
ATLAS documents its code using Doxygen [14] and all ATLAS developers are expected to put
normal comments and special Doxygen comments into their source code. Doxygen comments work
with C, C++, and Python code and provide a cross-referenced set of class names and member function
names. The Doxygen processor runs once a day to format the comments and header information about
the classes and members into web pages. User-written TWiki pages are used to organize the Doxygen-
generated web pages into coherent content. There are other ways to see the Doxygen pages including
an alphabetical class listing and links to the Doxygen content for each package from within the Tag
Collector. In an effort to increase the amount of code with Doxygen content, ATLAS has had two
coding “stand-down” weeks to write documentation and a third coding stand-down week is planned.
In addition, significant time and effort has been spent to reviewing the Doxygen documentation and
the supporting TWiki pages.

4.4.2. TWiki
ATLAS uses a TWiki [15] to generate most user-provided content and we have moved most
computing-related static web pages to the TWiki. The decision to use the TWiki was made because
wikis have proven to be easy to use and flexible. The TWiki now contains almost all SIT web content.
After significant work by the CERN computer centre staff the ATLAS TWiki was split into two areas:
one that is publically available and one that is only available to members of the collaboration. The SIT
is still dealing with how to search for information on the private TWiki because the private TWiki is
no longer visible to search engines such as Google. Additional details on the use of TWiki by ATLAS
can be found in the proceedings article for the ATLAS TWiki poster shown at CHEP09[15].

4.4.3. Workbooks
ATLAS adopted the excellent concept of the “workbook” [16] from the BaBar experiment at SLAC
and the OPAL experiment at CERN. A workbook is a written set of annotated examples of how to do
certain tasks with the software. New users following the workbook quickly learn how to do basic tasks
with the ATLAS software. ATLAS now has three “workbooks”:

1. The original introductory workbook on how to get started with the offline software.
2. A software developer’s workbook for learning how to develop software packages.
3. A physics analysis workbook that introduces the tools for analyzing ATLAS data.

The reception of the workbooks by the ATLAS user and developer communities has been very
favorable. The CMS experiment has adopted the workbook system based on ATLAS’s success with its
workbooks.

5. Conclusion
The SIT has adapted its tools and methods to the ever-increasing demand by the ATLAS collaboration
to support more and more developers, releases, validation, and documentation. Even though the SIT
has small number of FTEs, it provides excellent, effective central support for a very large
collaborative software project. As ATLAS readies production code for data taking, producing working
code on a schedule has been difficult but we have learned what is required to do the job:

• Lots of sophisticated tools to ease the handling of the large code base.
• Lots of care testing and validating the code to ensure that it functions properly.
• Lots of careful (human) coordination to organize the effort and keep track of the details.

We continue to proactively look for way to further improve the ATLAS software infrastructure.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042012 doi:10.1088/1742-6596/219/4/042012

9

References
[1] The SIT Collaboration, Albrand, S et al. 2006 Organization and management of ATLAS

software releases Proceedings of CHEP 2006 Mumbai India
Obreshkov E et al. 2008 Organization and management of ATLAS software releases Nucl.

Instrum. Meth. A584 244-251
[2] The ATLAS Collaboration, Aad G et al. 2008 The ATLAS Experiment at the CERN Large

Hadron Collider, JINST 3 S08003
[3] https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasReleaseValidation
[4] http://www.nongnu.org/cvs/
[5] Albrand S, Collot J, Fulachier J and Lambert F 2004 The tag collector – a tool for ATLAS Code

Release Management Proceedings of CHEP 2004 Interlaken Switzerland
[6] Arnault C 2000 Configurarion Management Tool Proceedings of CHEP 2000 Padova Italy

Arnault C 2001 Experiencing CMT in software production of large and complex projects
Proceedings of CHEP 2001 Bejing China

http://www.cmtsite.org/
[7] Undrus A 2003 Proc. Int. Conf. on Computing in High Energy and Nuclear Physics CHEP¹03

(La Jolla, USA) e-Print hep-ex/0305087 pp TUJT006
http://www.usatlas.bnl.gov/computing/software/nicos/index.html

[8] Undrus A 2004 Proc. Int. Conf. on Computing in High Energy and Nuclear Physics CHEP¹04
(Interlaken, Switzerland) CERN 2005-002 pp 521-3

[9] Zenz S 2008 A testing framework for the ATLAS offline simulation and reconstruction chain
ATL-SOFT-INT-2009-001; ATL-COM-SOFT-2008-011 Geneva CERN

[10] Ciba K, Richards A, Sherwood W and Simmons B 2009 The ATLAS RunTimeTester software
To be published in the proceedings of CHEP 2009 Prague Czech Republic

[11] Brasolin F and de Salvo A 2009 Benchmarking the ATLAS software though the Kit Validation
engine To be published in the proceedings of CHEP 2009 Prague Czech Republic

[12] Arnault C, de, Salvo A., George S and Rybkine G 2004 Proceedings of CHEP 2004 Interlaken
Switzerland

[13] http://physics.bu.edu/pacman
[14] http://www.Doxygen.org/

https://twiki.cern.ch/twiki/bin/view/Atlas/DoxygenDocumentation
[15] Amram N, Antonelli S, Haywood S, Lloyd S, Luehring F and Poulard G 2009 The use of the

TWiki web in ATLAS To be published in the proceedings of CHEP 2009 Prague Czech
Republic

[16] https://twiki.cern.ch/twiki/bin/view/Atlas/WorkBook
[17] http://ami.in2p3.fr/
[18] https://twiki.cern.ch/twiki/bin/view/Atlas/SoftwareDevelopmentWorkBookCheckReq

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042012 doi:10.1088/1742-6596/219/4/042012

10

