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Abstract. Two methods for measuring lifetimes of excited states in nuclei are discussed. One
recently developed method involves a plunger device and inverse kinematics Coulomb excitation
with heavy beams. The other method covers a different lifetime range and relies on electronic
timing. Both methods have recently been applied at Yale University. This paper will give a
brief overview of technical aspects of those measurements. A short motivation and preliminary
results of the experiments are given.

1. Introduction

This lecture covered methods for lifetime measurements in the picosecond and nanosecond
region, using different techniques. One is the well-known plunger technique, which we now put
to novel use in inverse kinematics reactions, namely Coulomb excitation. The new technique [1]
has been applied to stable beams at the Wright Nuclear Structure Laboratory (WNSL) at Yale
University, and has recently also been used by the Cologne group at Jyvaskylä (see contribution
by Ch. Fransen). The second technique presented in this paper is the measurement of lifetimes
of excited states via fast electronic timing. This method has been known since a long time, but
is one of the standard techniques for decay-spectroscopy at existing and upcoming radioactive
ion beam facilities.

Both methods have recently been applied at WNSL attacking two different physics themes,
which have the common ground of investigating the evolution of the B(E2) excitation strengths
of the first excited 2+ state over series of isotopes. For nuclei near closed shells those lifetimes
are usually in the picosecond range, too short for fast electronics measurements, and therefore
require the use of Doppler shift techniques. The plunger method that we used will be presented
in Section 2. We performed a recoil distance Doppler shift (RDDS) experiment on 120Te, in
order to extend the B(E2) excitation strength systematics within the Te isotopic chain to its
lightest stable isotope.

Section 3 will address measurements of lifetimes of the first excited state in near mid-shell
even-even nuclei. Such lifetimes are usually in the proximity of a nanosecond and are therefore
accessible with fast electronics techniques. An experiment on the deformed nucleus 172Hf will
be presented. The method will be shown, and the new, preliminary result will be discussed in
the framework of saturation of B(E2) strengths toward mid-shell.
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2. Inverse kinematics RDDS

2.1. Experimental details

For many even-even nuclei, the lifetimes of the first excited 2+ states are known from their
measured Coulomb excitation cross sections. However, in general this can result in systematic
errors due to unknown quadrupole moments or non-observed feeding. The RDDS technique
offers a model independent way of measuring lifetimes, independent from the excitation
mechanism. Whereas, classically, RDDS measurements have been performed mostly in normal
kinematics fusion evaporation or Coulomb excitation experiments, in the era of radioactive beam
experiments the use of inverse kinematics is mandatory. We performed a first measurement in
inverse kinematics Coulomb excitation using heavy beams.

The measurement was performed at WNSL using the New Yale Plunger Device (NYPD) and
eight clover detectors in the SPEEDY array [2]. A 300-MeV beam of 120Te was produced by
the 20-MeV ESTU tandem van de Graaff accelerator at WNSL, and impinged on a stretched
carbon target with a thickness of 400 µg/cm2. The beam was Coulomb excited on the carbon
target, and then reacted and unreacted beam were stopped in a copper target of 14 mg/cm2

thickness. The distance between the target and stopper foils were varied over a range of 5 -
1100 µm, therefore varying the probability of in-flight decay of the Coulomb excited 2+

1 state
in 120Te. The beam energy was well below (about 50% at mid-target) the Coulomb barrier,
ensuring that excitations of states other than the 2+

1 state were negligible. This simplified the
analysis tremendously, since no feeding needed to be taken into account, and a simple decay
function was fitted to the data.

Carbon from the target was forward scattered by the reaction and passed the stopper foil.
The carbon particles were subsequently detected in a circular silicon detector, placed directly
behind the target. Gamma-rays from the de-excitation of the 2+

1 state were detected in the
clover detectors, which were placed at 41.5◦ and 138.5◦ relative to the beam axis, either at
Doppler shifted energies in the case of in-flight decay, or at the excitation energy of 560.4 keV
of the 2+

1 state. The trigger for the data acquisition was a particle-gamma coincidence. After
random background subtraction the observed peaks appeared on almost no background, and
were well separated due to the large v/c value of about 6%. Sample spectra are shown in Fig.
1.

Figure 1 also includes lines from the decays of higher-lying excited states, which are two
orders of magnitude smaller than the peak of interest and can therefore be neglected. Statistics
in those lines were insufficient to perform an RDDS analysis for those states, however, we were
able to perform a Coulomb excitation analysis to extract their B(E2) decay strengths relative
to that of the 2+

1 state.

2.2. RDDS analysis and results

In order to extract a lifetime, we define the ratio

P (d) =
I
(shifted)
γ (d)

I
(total)
γ (d)

, (1)

of the shifted peak intensity I
(shifted)
γ over the total peak intensity I

(total)
γ for each distance d

between the two foils. The peak intensities are corrected for detector efficiencies and the angular
distribution of gamma-rays, which was obtained from the Coulomb excitation code by Winther
and de Boer [3]. Neglecting feeding from higher-lying states, the P ratio should follow a simple
decay law:

P (d) = 1 − e−λ(d−d0) , (2)

where λ = 1/(vτ) contains the lifetime information. The mean velocity v is extracted directly
from the mean energies of the Doppler shifted peaks at forward and backward angles. d0 is left
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Figure 1. Particle gated and random subtracted sum spectra of 120Te for all plunger distances.
The left top and bottom panels show the summed spectra for the 2+

1 → 0+
1 transition at forward

and backward angles, respectively. The right top and bottom panels correspondingly show other
observed transitions, according to the level scheme on the left hand side.

as a free fit parameter that corresponds to the minimum achievable distance between the two
foils.

At high recoil velocities, relativistic effects need to be taken into account. As such, the
detector angles in the laboratory frame have to be corrected. The Lorentz transformation of
the angular distribution consists of a transformation of the emission angle, as well as of a
multiplicative factor J from the Jacobian transformation to the center of mass (CM) frame:

J =
dΩCM

dΩlab

=
1 − (v/c)2

(1 − v/c · cos θlab)2
. (3)

While the transformation of the emission angle has a negligible effect on the angular distribution
of gamma-rays, the Jacobian of the transformation leads to a significant difference between the
angular distributions of gamma-rays emitted in-flight or stopped. The correction in our case is
on the order of 8%.

The hyperfine interaction between the nucleus and the atomic electrons when recoiling into
vacuum causes a de-orientation of the aligned nuclear state [4]. This effect is taken into account
by time-dependent attenuation coefficients

G
(stopped)
k (d) = exp

(

−
|g|d

vCk

)

and (4)

G
(in−flight)
k (d) =

1

1 + |g|τ
Ck

1 − exp
(

−(1 + |g|τ
Ck

) d
vτ

)

1 − exp
(

− d
vτ

) , (5)

where |g| is the absolute value of the g factor of the excited state. De-orientation due to recoil into
vacuum has been extensively studied for tellurium isotopes at v ≈ 0.06c [5], where the parameters
Ck that appear within the Gk coefficients have been fixed, and therefore could be used for the
present analysis. The data points from the 120Te experiment, including all corrections, and the
fit to obtain the lifetime of the 2+

1 state are shown in Fig. 2. The fit results in a mean lifetime
of τ = 10.4(2) ps, which is a significant improvement compared to the currently listed value of
τlit = 1.3(27) ps [6].
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Figure 2. P ratios from eq. (1) and the fitted function from eq. (2) for the 2+
1 state in 120Te.

2.3. Future use of the plunger method

The RDDS technique as presented above is suitable for experiments with weak beams. In order
to test this, only part of the present data has been sorted corresponding to a beam intensity of
105−6 particles per second, which is in the range of new radioactive beam facilities. An analysis
of the reduced data set yielded a lifetime result with a statistical error well below 10%. The
plunger technique should also allow to measure absolute values of g factors of excited states over
series of isotopes. Therefore, the de-orientation from recoil into vacuum needs to be measured by
the angular distributions of gamma-rays. The hyperfine parameters in eqs. (4) and (5) need to
be fixed from a measurement of a state with known g factor. Since those parameters should not
vary within an isotopic chain, for neighbor isotopes the only free parameter in the de-orientation
coefficients then is the g factor. This technique is currently being tested at WNSL.

3. Fast electronics lifetime measurements

3.1. Experimental details

In this section a method of measuring lifetimes using electronics is presented. In our case, we
have been interested in the lifetime of the 2+

1 state of the well-deformed rare-earth nucleus 172Hf.
Data on the Hf isotopes (as well as other isotopic chains) suggest that the B(E2) strengths in
deformed nuclei rise toward mid-shell, but show a saturation effect around mid-shell [7, 8].
Since much of the available data stems from the 1970’s, and was often obtained in relatively low
statistics experiments, we tested this by a new lifetime measurement.

The safest way to obtain the lifetime of a given state is to have a signal from the direct
population of the state, and a signal from its decay, and measure the time difference between
both. The signals in our case were given by the gamma-ray transitions 4+

1 → 2+
1 at 214.0 keV and

2+
1 → 0+

1 at 95.2 keV. The corresponding gamma-rays were detected by four BaF2 scintillators
surrounding the source. The beta-decay from 172Ta populates mostly directly the 4+

1 state in
172Hf. The mother nuclei 172Ta were produced at the moving tape collector (MTC) setup [9] at
WNSL using the reaction 165Ho(12C,5n). Fusion evaporation residues, which were recoiling out

XVIII International School on Nuclear Physics, Neutron Physics and Applications IOP Publishing
Journal of Physics: Conference Series 205 (2010) 012025 doi:10.1088/1742-6596/205/1/012025

4



Figure 3. Schematic of the setup at the MTC. Four BaF2 detectors were used for the lifetime
measurement, in addition one Ge detector was used as a monitor.

of the 4 mg/cm2 self-supporting foil, were implanted on a tape behind the target. The beam
itself was stopped by a gold plug in between target and tape, while most recoils passed the plug
at angles larger than 2◦.

The halflife of 172Ta is about 36 minutes, therefore a tape cycle of about 67 minutes was
chosen. That means that activity was collected on tape for 67 minutes, and then moved in
between the detectors, while activating the next spot on the tape in parallel to measuring
gamma-rays after beta-decay at the well-shielded detector setup. After the detection period,
the activated spot was carried away to a tape holding box in order to minimize unwanted
background from subsequent beta-decays. A schematic of the MTC setup is shown in Fig. 3.

The array of four BaF2 detectors allowed for a total of twelve independent detector pairs for
the lifetime measurement. For each pair, an energy gate was set on the 4+

1 → 2+
1 transition in

one detector, and on the 2+
1 → 0+

1 in the other detector. The constant fraction time signals from
both detectors (with the condition on the energies) were fed into VME based time-to-digital
converters (TDCs), and the amplified energy signals were fed into VME based analog-to-digital
converters (ADCs). The TDC time resolution was set to its minimum of about 35 ps per channel.

A standard germanium detector was also added to the setup, in order to derive a high-
resolution spectrum from the source, and therefore exclude the possibility of contaminants in
the peaks of interest. A sample energy spectrum of a BaF2 detector is shown in comparison to
the Ge spectrum in Fig. 4. The energy resolution of the scintillator would not have allowed to
exclude contaminants, but no lines other than the expected decays of interest are observed in
the Ge detector. The energy gates placed on the BaF2 spectra are indicated by “A” and “B”.
The corresponding times of events in regions “A” and “B” of two detectors were subtracted from
each other and sorted into time-difference spectra. A sample is shown in the insert of Fig. 4.
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Figure 4. Energy spectrum of a BaF2 detector (top), compared to the spectrum taken with a
Ge detector (bottom). The insert in the top panel illustrates a sample time-difference spectrum
(log-scale) between two BaF2 detectors and a fitted line to the relevant portion.

3.2. Fast timing analysis and results

In order to obtain the lifetime of the 2+
1 state, we simply fit a line to the portion of the time-

difference spectrum that corresponds to the exponential decay of the state. The region in the
time-difference spectrum that corresponds to the detector response, therefore the time resolution
of the system (prompt peak), has been determined before the actual experiment using prompt
coincidences from a 60Co source. In that measurement gates were placed on the Compton
background of the 60Co spectra around 95 keV and 214 keV, thus the energy regions of interest.
This step is important since the time resolution is a function of gamma-ray energy. The portion of
the time-difference spectra which is dominated by the system response function is well excluded
from the region of the lifetime fit.

For the final analysis, only 6 out of 12 detector pairs could be used due to problems with
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some of the electronics branches. Still, we are left with 6 independent values for the 2+
1 lifetime

in 172Hf, which we average to a mean lifetime of τ = 2.655(79) ns. This is a significant difference
to the literature value of τlit = 2.23(14) ns [10], and lowers the error bar by a factor of two.
Lowering the lifetime of the 2+

1 state in 172Hf leads to an increase of its B(E2) value, which now
does not show a drop as from listed data (e.g., Fig. 1 in Ref. [7]), but rather further increases
from the value in 170Hf, which has recently been remeasured [11]. Therefore, it is important
to check further isotopes toward mid-shell in order to see to which extent a saturation effect is
actually present in the Hf isotopic chain.

3.3. Future prospects of fast lifetime measurements

The largest drawback in our measurements using BaF2 detectors is the poor energy resolution
of those detectors, which is typically in the range of 10%. In our case the obtained spectra
were sufficiently clean to avoid problems that may arise from contaminant or overlapping peaks.
However, in general it would be appreciable to get a better energy resolution, but a similarly
good timing resolution. A scintillator material (LaBr3) which has these properties has recently
been developed and will be of particular interest for future studies in decay spectroscopy.
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