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Maximization of Tsallis entropy in the combinatorial

formulation

Hiroki Suyari
Graduate School of Advanced Integration Science, Chiba University, Chiba-shi, Chiba,
263-8522, Japan

E-mail: suyari@faculty.chiba-u.jp, suyari@ieee.org

Abstract. This paper presents the mathematical reformulation for maximization of Tsallis
entropy Sq in the combinatorial sense. More concretely, we generalize the original derivation
of Maxwell-Boltzmann distribution law to Tsallis statistics by means of the corresponding
generalized multinomial coefficient. Our results reveal that maximization of S2−q under the
usual expectation or Sq under q-average using the escort expectation are naturally derived from
the combinatorial formulations for Tsallis statistics with respective combinatorial dualities, that
is, one for additive duality and the other for multiplicative duality.

1. Introduction
Since the introduction of Tsallis entropy[1] in 1988 for a generalization of Boltzmann-Gibbs
statistics (BG statistics), the maximum entropy principle has been the main approach along
the Jaynes’ original idea[2]. Jaynes developed Shannon’s monumental achievement as pioneer of
information theory in 1948 for the new method nowadays called maximum entropy principle
(MEP) in mathematical physics. Originally, Jaynes applied the maximization of Shannon
entropy under a constant expectation to the mathematical reformulation of Boltzmann-Gibbs
statistics. On the other hand, the standard and well accepted introduction for Boltzmann-Gibbs
statistics has been to count the number of accessible microstates[3]. From the traditional point
of view in statistical physics, the counterpart for the number of accessible microstates in Tsallis
statistics has been missing. For this purpose, the q-multinomial coefficient was introduced from
the mathematics of the q-exponential and it was shown to have a natural generalization of the
one-to-one correspondence between the usual multinomial coefficient and Shannon entropy[4].
This relation also reveals the additive duality (q ↔ 2 − q) in Tsallis statistics. After that,
the q-multinomial coefficient was generalized to cover the four typical mathematical structures:
the additive duality (q ↔ 2 − q), the multiplicative duality (q ↔ 1/q), the q-triplet and the
multifractal-triplet[5]. Based on these mathematical results, the maximization of Tsallis entropy
is reformulated in the combinatorial sense.

This paper consists of 4 sections including this introduction. In order to clarify the essential
idea, an important and simple example of Jaynes’ MEP for Boltzmann-Gibbs statistics is first
given in the section 2. In the following section 3, the MEP for Tsallis statistics is reformulated
using the above combinatorial formula. The section 4 concludes the paper.
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2. A simple example of Jaynes’ MEP for BG statistics
The present example was originally used by Boltzmann and later simplified in [6]. In order to
clarify the mathematical formulations for MEP in Tsallis statistics from the combinatorial point
of view, this example is generalized in the next section.

Suppose that n dice are thrown on the table and the total number of spots showing is nU1.
What proportion of the dice are showing face i, i = 1, · · · , 6 ?

Let ni be the number of the spots showing face i when n dice are thrown. Then there

are
[

n
n1 · · · n6

]
such ways. This is a macrostate labeled by (n1, · · · , n6) corresponding to[

n
n1 · · · n6

]
microstates. Each microstate has a probability 1

6n which directly comes from

the principle of equiprobability. To find the most probable macrostate, we wish to maximize[
n

n1 · · · n6

]
under the constraint observed on the total number of spots,

∑6
i=1 ini = nU1.

This maximization problem is formulated as

maximize :
[

n
n1 · · · n6

]
(1)

constraint :
6∑

i=1

ini = nU1 (2)

Using the Stirling’s formula, the number of microstates
[

n
n1 · · · n6

]
is approximated to

Shannon entropy in the following sense.

ln
[

n
n1 · · · n6

]
� nS1

(n1

n
, · · · n6

n

)
(3)

Thus, the logarithm ln is a monotone increasing function and we define pi := ni
n , so that the

above maximization problem is equivalent to the following form.

maximize : S1 (p1, · · · p6) (4)

constraint :
6∑

i=1

ipi = U1 (5)

The above equivalence was originally given by G.Wallis in 1962 [7] after the original paper
of Jaynes [2]. This maximization problem is well known to be solved through the Lagrange
multiplier method:

L := S1 (p1, · · · p6)− α

(
6∑

i=1

pi − 1

)
− β1

(
6∑

i=1

ipi − U1

)
(6)

and its solution is given by

p∗i =
exp (−β1i)

Z
(i = 1, · · · , 6) (7)

where β1 is chosen so that
∑6

i=1 ip∗i = U1. Thus, the most probable macrostate is (np∗1, · · · , np∗6)
where n∗i = np∗i dice show face i. In statistical physics, β1 is the inverse temperature, i.e.,

∂S1

∂U1
= β1. (8)

In the next section, the above equivalence between two maximization problems is generalized
to Tsallis statistics in accordance with the same procedure as above.
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3. Reformulation of Jaynes’ MEP for Tsallis statistics in the combinatorial sense
3.1. Preliminaries
The mathematical structure in Tsallis statistics was recently found to be originated from the
very fundamental nonlinear differential equation [8][9](See the appendix):

dy

dx
= yq. (9)

The solution to the above equation is given by the so-called q-exponential:

y = expq (x) := [1 + (1− q) x]
1

1−q (10)

defined for x ∈ R satisfying 1 + (1− q) x > 0. In the course of the above derivation, the inverse
to the q-exponential is appeared.

lnq x :=
x1−q − 1

1− q
(11)

which is called q-logarithm defined for x > 0.
Then the q-product ⊗q is introduced as a natural generalization of the exponential law in the

following way:

lnq (x⊗q y) = lnq x + lnq y, (12)
expq (x + y) = expq (x)⊗q expq (y) . (13)

Thus, the q-product is concretely determined [10][11].

Definition 1 (q-product) For any x, y > 0 satisfying x1−q + y1−q − 1 > 0,

x⊗q y :=
[
x1−q + y1−q − 1

] 1
1−q (14)

is the q-product.

By means of the q-product (14), the q-factorial is naturally defined in the following form.

Definition 2 (q-factorial) For a natural number n ∈ N and q > 0, the q-factorial n!q is defined
by

n!q := 1⊗q · · · ⊗q n. (15)

Thus, we concretely compute the q-Stirling’s formula [4].

Proposition 3 (q-Stirling’s formula) Let n!q be the q-factorial defined by (15). The rough
q-Stirling’s formula lnq (n!q) is computed as follows:

lnq (n!q) =

⎧⎨
⎩

n lnq n− n

2− q
+ O (lnq n) if q �= 2,

n− ln n + O (1) if q = 2.
(16)

The above rough q-Stirling’s formula is obtained by the approximation:

lnq (n!q) =
n∑

k=1

lnq k �
∫ n

1
lnq xdx. (17)

The rigorous derivation of the q-Stirling’s formula is given in [4].
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In order to define the q-multinomial coefficient, the q-ratio �q, the inverse operation to the
q-product ⊗q, is also needed and similarly defined from the requirements:

lnq (x�q y) = lnq x− lnq y, (18)
expq (x− y) = expq (x)�q expq (y) . (19)

Then, we define the q-ratio �q[10][11].

Definition 4 (q-ratio) For any x, y > 0 satisfying x1−q − y1−q + 1 > 0,

x�q y :=
[
x1−q − y1−q + 1

] 1
1−q (20)

is the q-ratio.

We apply these formulations, q-product and q-ratio, to the definition of the q-multinomial
coefficient [4].

Definition 5 (q-multinomial coefficient) For n =
∑k

i=1 ni and ni ∈ N (i = 1, · · · , k) , the q-
multinomial coefficient is defined by[

n
n1 · · · nk

]
q

:= (n!q)�q [(n1!q)⊗q · · · ⊗q (nk!q)] . (21)

Based on these formulations, Tsallis entropy is derived as a natural generalization of the
usual correspondence (3) [4].

Theorem 6 When n ∈ N is sufficiently large, the q-logarithm of the q-multinomial coefficient
coincides with Tsallis entropy (23) in the following correspondence:

lnq

[
n

n1 · · · nk

]
q

�

⎧⎪⎪⎨
⎪⎪⎩

n2−q

2− q
· S2−q

(n1

n
, · · · ,

nk

n

)
if q > 0, q �= 2

−S1 (n) +
k∑

i=1
S1 (ni) if q = 2

(22)

where Sq is Tsallis entropy:

Sq (p1, . . . , pk) =
1−

k∑
i=1

pq
i

q − 1
(23)

and S1 (n) := S1

(
1
n , · · · 1

n

)
= ln n.

See [4] for the details and its proofs.
Therefore, Tsallis entropy is found to be the information measure uniquely determined by the

nonlinear differential equation (9) [9]. Moreover, the parameter q in Tsallis statistics coincides
with the parameter q in the generalized dimension Dq for multifractal systems in the following
sense [12]:

exp
(
SRényi

q (pi)
)

= expq

(
STsallis

q (pi)
)

= exp1/q

(
STsallis

1/q (Pj)
)
� ε−Dq (24)

where SRényi
q is the Rényi entropy:

SRényi
q :=

ln
k∑

i=1
pq

i

1− q
, (25)
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Pj is the so-called escort distribution defined by

Pj :=
pq

j

k∑
i=1

pq
i

(j = 1, · · · , k) , (26)

and Dq is the generalized dimension:

Dq := lim
ε→0

1
q − 1

ln
k∑

i=1
pq

i

ln ε
. (27)

In the following subsections, the maximization problem in Tsallis statistics is reformulated
in the combinatorial sense in accordance with the section 2.

3.2. Maximization of S2−q under the normal expectation
In Tsallis statistics, the maximization of (1) under the constraint (2) is generalized in the
following form:

maximize :
[

n
n1 · · · n6

]
q

(28)

constraint :
6∑

i=1

ini = nU1 (29)

The q-logarithm lnq is also a monotone increasing function and we define pi := ni
n , so that the

above maximization problem is equivalent to the following form.

maximize : S2−q (p1, · · · p6) (30)

constraint :
6∑

i=1

ipi = U1 (31)

Here we used the one-to-one correspondence (22). The maximization of S2−q under the normal
expectation (31) has been considered in some papers [13][14]. The thermodynamic relation is
obtained as

∂S2−q

∂U1
= β1. (32)

See [14] for the details.
Note that this β1 is the same as β1 in (8). This case is due to the additive duality q ↔ 2− q

in Tsallis statistics. The multiplicative duality q ↔ 1/q is also well known in Tsallis statistics,
which maximization problem is reformulated in the similar combinatorial sense from the slight
generalization of the correspondence (22).

3.3. Maximization of Sq under the q-average (q-normalized expectation)
In order to find the multiplicative duality q ↔ 1/q in the relation between a generalized
multinomial coefficient and Tsallis entropy, some generalizations of the mathematical formulas
in the subsection 3.1 are introduced in [5].
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Definition 7 ((μ, ν)-factorial) For a natural number n ∈ N and μ, ν ∈ R, the (μ, ν)-factorial
n!(μ,ν) is defined by

n!(μ,ν) := 1ν ⊗μ 2ν ⊗μ · · · ⊗μ nν . (33)

where ν �= 0.

Definition 8 ((μ, ν)-multinomial coefficient) For n =
∑k

i=1 ni and ni ∈ N (i = 1, · · · , k) , the
(μ, ν)-multinomial coefficient is defined by[

n
n1 · · · nk

]
(μ,ν)

:=
(
n!(μ,ν)

)�μ

[(
n1!(μ,ν)

)⊗μ · · · ⊗μ

(
nk!(μ,ν)

)]
. (34)

where n!(μ,ν) is the (μ, ν)-factorial defined in (33).

Proposition 9 ((μ, ν)-Stirling’s formula) Let n!(μ,ν) be the (μ, ν)-factorial defined by (33). The
(μ, ν)-Stirling’s formula lnμ

(
n!(μ,ν)

)
is computed as follows:

lnμ

(
n!(μ,ν)

)
=

⎧⎨
⎩

n lnμ nν − νn

ν (1− μ) + 1
+ O (lnμ n) if ν (1− μ) + 1 �= 0,

ν (n− ln n) + O (1) if ν (1− μ) + 1 = 0.
(35)

This formula is computed by the approximation:

lnμ

(
n!(μ,ν)

)
=

n∑
k=1

lnμ kν �
∫ n

1
lnμ xνdx. (36)

Based on these results, we obtain the one-to-one correspondence between the (μ, ν)-
multinomial coefficient and Tsallis entropy as follows.

Theorem 10 When n is sufficiently large, the μ-logarithm of the (μ, ν)-multinomial coefficient
coincides with Tsallis entropy (23) as follows:

1
ν

lnμ

[
n

n1 · · · nk

]
(μ,ν)

�

⎧⎪⎪⎨
⎪⎪⎩

nq

q
· Sq

(n1

n
, · · · ,

nk

n

)
if q �= 0

−S1 (n) +
k∑

i=1
S1 (ni) if q = 0

(37)

where ν �= 0,
ν (1− μ) + 1 = q, (38)

Sq is Tsallis entropy (23) and S1 (n) := S1

(
1
n , · · · 1

n

)
= ln n.

See [5] for the details and its proofs.
The multiplicative duality q ↔ 1/q in (37) is recovered when ν = q. Then, μ is determined

as μ = 1
q from (38), so that we obtain

ln 1
q

[
n

n1 · · · nk

]
“

1
q
,q

” � nq · Sq

(n1

n
, · · · ,

nk

n

)
(39)

which reveals the multiplicative duality “q ↔ 1
q”.
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In order to give the combinatorial formula of the maximization of Sq under the constraint
the q-average (q-normalized expectation) in [15], the generalized multinomial coefficient on the
left side of (39) is rewritten by means of the “form” of the q-multinomial coefficient (21).[

n
n1 · · · nk

]
“

1
q
,q

” =
[

nq

nq
1 · · · nq

k

]
1
q

(40)

Note that
[

nq

nq
1 · · · nq

k

]
1
q

does not satisfy the definition of (21) because
∑k

i=1 nq
i �= nq,i.e.,

∑k
i=1

(
ni
n

)q �= 11. Instead of this inconsistency involved in the formula (40), we apply the
distribution determined from

(
nq

1, · · · , nq
k

)
to the constraint. Summarizing the maximization

problem in combinatorial form, we have

maximize :
[

n
n1 · · · n6

]
“

1
q
,q

”

(
=
[

nq

nq
1 · · · nq

6

]
1
q

)
(41)

constraint :
6∑

i=1

i
nq

i∑6
j=1 nq

j

= Uq (42)

where this Uq is slightly different from U1 because the q-dependent expectation (q-average)
is employed in the above maximization problem. Remark that the q-average (q-normalized
expectation) does not depend on the summation

∑k
i=1 ni = n. Using (37), the above

maximization problem is equivalent to the following form.

maximize : Sq (p1, · · · , p6) (43)

constraint :
6∑

i=1

i
pq

i∑6
j=1 pq

j

= Uq (44)

The thermodynamic relation has been already obtained as

∂Sq

∂Uq
= βq

⎛
⎝ 6∑

j=1

pq
j

⎞
⎠ = β (45)

where βq := q
q+(1+α)(1−q)β, α and β are the Lagrange multipliers. βq is the generalized inverse

temperature which coincide with 1/kTq (Tq: the physical temperature [17]). See [18] for the
details. In addition, Obviously, ∂Sq

∂Uq
= β is a natural generalization of (8).

4. Conclusion
This paper presents the two combinatorial formalisms for the well-known maximum entropy
problems in Tsallis statistics. One is the use of the usual expectation and the other is the
q-average. More general combinatorial formalism for Tsallis entropy can be obtained if one
uses the one-to-one correspondence (37). But the combinatorial meanings in the generalized
multinomial coefficient are still missing, which is remained as a future work.

1 This case naturally leads us to the maximization of Sq under the constraint
Pk

i=1 ipq
i = U , which has been

proposed in [16] and used for several years. Since the paper [15] in 1998, this constraint has never been applied
for MEP in Tsallis statistics, because some requirements as expectation are missing. (e.g.,

Pk
i=1 pq

i �= 1.)
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Appendix
Boltzmann-Gibbs statistics Tsallis statistics

fundamental equation dy
dx = y dy

dx = yq

fundamental function exponential function q-exponential function
information measure Shannon entropy Tsallis entropy

multiplication × (product)(independence) ⊗q (q-product)

q q = 1 q �= 1
(q in the generalized dimension Dq)

fundamental operator
differential operator
df
dx = lim

h→0

f(x+h)−f(x)
h

Jackson’s q-differential operator
dqf
dqx = f(qx)−f(x)

(q−1)x

divergence Kullback-Leibler divergence
α-divergence

q = 1−α
2 (α �= ±1)
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