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Abstract. We propose a definition for the entropy of a monotone set function defined on a
lattice which are not necessarily the whole power set, but satisfy the condition of regularity. Our
definition encompasses the classical definition of Shannon for probability measures, as well as
the definition of Marichal for classical fuzzy measures and may have applicability to most fuzzy
measures which appear in applications. We give also an axiomatization of this entropy. This
axiomatization is in the spirit of Faddeev’s axiomatization for the classical Shannon entropy.
After that, using same idea we introduce a generalization of the Shapley value for a set function
defined on a lattice and give two types of necessary and sufficient conditions.

1. Introduction
The classical definition of the Shannon entropy [11] for probability measures is at the core of
information theory. Therefore, many attempts for defining an entropy for a set function more
general than the classical probability measures have been done, in particular for the monotone
set function, what is called the fuzzy measure [13] or the capacity. A first attempt by Yager
[15] and Marichal and Roubens [10] proposed a definition having suitable properties, and which
can be considered as the generalization of the Shannon entropy. Another attempt was also done
by Dukhovny [2], in a different spirit. All these works considered a finite universal set, and the
power set as underlying set system. Whereas we consider more general fuzzy measure, defined on
lattices or set systems satisfying a kind of regularity, i.e., that all maximal chains have the same
length, which are not necessary the whole power set [5]. Our definition encompasses the classical
definition of Shannon, as well as the definition of Marichal [10], and may have applicability to
most monotone set functions which appear in applications. Moreover our characterization of
this entropy is in the spirit of Faddeev’s axiomatization for the classical Shannon entropy [6].
In this paper, we introduce a definition for the entropy of the fuzzy measure defined on lattices,
which is a yet more general case of monotone set functions. A set system is merely a collection
of subsets of some universal set, containing the empty set and the universal set itself. The
difference with usual fuzzy measures on power set is that the fuzzy measure, with which we are
concerned, is not defined for every subset (or coalition, in a game theoretic perspective). We
define the entropy for such fuzzy measures on set systems, provided that the set system satisfies
a regularity condition. Moreover, using join-irreducible elements, there is a close connection
between set systems and lattices, so that our definition can be applied to monotone set function
on lattices as well. We give also a characterization for this generalized entropy.
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Using the same idea, we can define a solution of game defined on a lattice. The second aim
of the paper is to provide a definition of a solution of game on lattice, which encompasses the
Shapley value. We give two types of axiomatic characterizations of a solution for game on a
lattice.

2. Preliminaries
Throughout this paper, we consider a finite universal set N = {1, 2, . . . , n}, n ≥ 1, and 2N

denotes the power set of N .

Definition 1 (set system) Let N be a subset of 2N . If N contains ∅ and N , then we call
(N,N) (or simply N if no confusion occurs) a set system.

Let A,B ∈ N. We say that A is covered by B, and write A ≺ B or B ≻ A, if A ( B and
A ⊆ C ( B together with C ∈ N imply C = A.

Definition 2 (maximal chain) Let N be a set system. We call C a maximal chain of N if
C = (C0, C1, . . . , Cm) satisfies ∅ = C0 ≺ C1 ≺ · · · ≺ Cm = N,Ci ∈ N, i = 0, . . . ,m.

The length of the maximal chain C = (C0, C1, . . . , Cm) is m. We denote the set of all maximal
chains of N by M(N).

Definition 3 (totally ordered set system, chain) We say that (N,N) is a totally ordered
set system or a chain if for any A,B ∈ N, either A ⊆ B or A ) B.

If (N,N) is a totally ordered set system, then it has only one maximal chain.

Definition 4 (regular set system) We say that (N,N) is a regular set system if for any
A,B ∈ N satisfying A ≻ B, |A \B| = 1 holds.

Definition 5 (fuzzy measure on a set system) Let (N,N) be a set system. A function
v : N → [0, 1] is a fuzzy measure on (N,N) if it satisfies v(∅) = 0, v(N) = 1 and for any
A,B ∈ N, v(A) ≤ v(B) whenever A ⊆ B.

For clarifying the domain of v, we denote often the triplet (N,N, v) instead of simply v. we
denotes it by the triplet (N,N, v). F(N,N) denotes the set of all fuzzy measure defined on
(N,N).

For v ∈ F(N,N) and C := (C0, C1, . . . , Cm) ∈ M(N), define pv,C by

pv,C := (pv,C1 , pv,C2 , . . . , pv,Cm )

= (v(C1)− v(C0), v(C2)− v(C1), . . . , v(Cm)− v(Cm−1)).

Note that pv,C satisfies pv,Ci ≥ 0, i = 1, . . . ,m and
∑m

i=1 p
v,C
i = 1.

We turn now to definitions of the entropy. We first recall the classical definition of Shannon.

Definition 6 (Shannon entropy[11]) For a probability measure p = (p1, . . . , pn) on N , the
Shannon entropy of p is defined by

HS(p) = HS(p1, . . . , pn) := −
n∑

i=1

pi log pi,

where pi := p({i}) and log denoting the base 2 logarithm, and by convention 0 log 0 := 0.
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Marichal has generalized the Shannon entropy for applying to the fuzzy measure on 2N .

Definition 7 (Marichal’s entropy [10]) For v ∈ F(N, 2N ), Marichal’s entropy of v is
defined by

HM (v) = HM (N, 2N , v) := −
∑

A⊆N\{i}

γn|A|(v(A ∪ {i})− v(A)) log (v(A ∪ {i})− v(A)),

where

γnk :=
(n− k − 1)!k!

n!
.

The axiomatization of Marichal’s entropy is proposed by Kojadinovic et al. [9]. Their
axiomatization is however rather complicated, due to the presence of a recursive axiom, whose
meaning is hard to grasp.

Using the concept of the maximal chain, we have proposed a generalization of the definition
of the entropy for fuzzy measures defined on regular set systems.

Definition 8 (entropy of fuzzy measure on set system [5]) Let (N,N) be a regular set
system. For v ∈ F(N,N), the entropy of v is defined by

HHG(v) = HHG(N,N, v) :=
1

|M(N)|
∑

C∈M(N)

HS(p
v,C).

We discuss the domains of H. Let Σn be a all regular set of N = {1, 2, . . . , n}. The domain of
FR :=

∪∞
n=1

∪
N∈Σn

F(N,N), that is, all of the fuzzy measures defined on regular set systems.
We introduce further concepts about fuzzy measures, which will be useful for stating axioms

of the entropy.

Definition 9 (dual measure) For v ∈ FR, the dual measure of v is defined on Nd := {A ∈
2N | Ac ∈ N} by vd(A) := 1− v(Ac) for any A ∈ Nd, where Ac := N \A.

Definition 10 (permutation of v) Let π be a permutation on N . For v ∈ FR, the
permutation of v by π is defined on π(N) := {π(A) ∈ 2N | A ∈ N} by π ◦ v(A) := v(π−1(A)).

Let us consider a chain of length 2 as a set system, denoted by 2 (e.g., {∅, {1}, {1, 2}}), and
a fuzzy measure v2 on it. We denote by the triplet (0, u, 1) the values of v2 along the chain and
we suppose 2 := {∅, {1}, {1, 2}} unless otherwise noted.

Definition 11 (embedding of v2) Let (N,C) be a totally ordered regular set system such that
C := {C0, . . . , Cn}, Ci−1 ≺ Ci, i = 1, . . . , n. For v ∈ F(N,C), v2 = (0, u, 1) and Ck ∈ C, vCk

is called the embedding of v2 into v at Ck and defined on the totally ordered regular set system
(NCk ,CCk) by

vCk(A) :=


v(A), ifA = Cj , j < k,
v(Ck−1) + u ·

(
v(Ck)− v(Ck−1)

)
, ifA = C ′

k
v(Cj−1), ifA = C ′

j , j > k,

where {ik} := Ck \ Ck−1, i
′
k ̸= i′′k, (N \ {ik}) ∩ {i′k, i′′k} = ∅, NCk := (N \ {ik}) ∪ {i′k, i′′k}, C ′

k :=
(Ck \ {ik}) ∪ {i′k}, C ′

j := (Cj−1 \ {ik}) ∪ {i′k, i′′k} for j > k, and CCk := {C0, . . . , Ck−1, C
′
k, C

′
k+1,

. . . , C ′
n+1}.
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Definition 12 (join-irreducible element) An element x ∈ (L,≤) is join-irreducible if for
all a, b ∈ L, x ̸= ⊥ and x = a ∨ b implies x = a or x = b.

J (L) denotes the set of all join-irreducible elements of L. The mapping η for any a ∈ L, defined
by

η(a) := {x ∈ J (L) | x ≤ a}

is a lattice-isomorphism of L onto η(L) := {η(a) | a ∈ L}, that is, (L,≤) ∼= (η(L),⊆). In this
paper, though we consider only set functions defined on set systems, using the translation η, we
can treat set functions defined on lattice (L,≤) as one defined on set system (J (L), η(L)).

3. Axiomatization of the entropy of fuzzy measures
We introduce five axioms for the entropy of fuzzy measures.

Axiom 1 (continuity) The function f(u) := H(0, u, 1) = H(v2, {1, 2},2) is continuous on
[0, 1], and there exists u0 ∈ [0, 1] such that f(u0) > 0.

Axiom 2 (dual invariance) For any v2 = (0, u, 1) ∈ F({1, 2},2),

H(0, u, 1) = H(0, 1− u, 1).

Axiom 3 (increase by embedding) Let (N,C) be a totally ordered regular set system. For
any v ∈ F(N, C), any Ck ∈ C and any v2 = (0, u, 1), the entropy of vCk is

H(vCk) = H(v) + (v(Ck)− v(Ck−1)) ·H(0, u, 1).

Axiom 4 (convexity) Let (N,N), (N,N1), . . . , (N,Nk) be regular set systems satisfying

M(N) =
∪k

j=1M(Nj), and M(Ni)∩M(Nj) = ∅ for all i ̸= j. Then there exists (α1, . . . , αk) ∈
]0, 1[k with

∑k
j=1 αj = 1 such that for any v ∈ F(N,N), it holds that

H(v) = α1H(v|N1) + · · ·+ αkH(v|Nk
).

Axiom 5 (permutation invariance) For any v ∈ FR and any permutation π on N satisfying
π(N) = N, it holds that H(v) = H(π ◦ v).

Theorem 13 ([6]) Let (N,N) be a regular set system and (N,N, v) a fuzzy measure. Then
there exists the unique function satisfying Axioms 1, 2, 3, 4 and 5, and it is given by HHG.

Now we recall the Tsallis entropy. The Tsallis entropy was introduced in 1988 ([14]), and it
has been studied intensively by many authors.

Definition 14 Let q be a positive real number. For a probability measure p = (p1, . . . , pn) on
N , the Tsallis entropy of p is defined by

HT (p) = HT (p1, . . . , pn) = −
n∑

i=1

pqi lnq pi,

where pi := p({i}) and

lnq(x) :=
x1−q − 1

1− q
.

We can define the Tsallis entropy of the fuzzy measure defined on set systems, using our
framework.
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Definition 15 Let (N,N) be a regular set system. For v ∈ F(N,N) the entropy of v is defined
by

HT (v) = HT (N,N, v) :=
λq

|M(N)|
∑

C∈Mn(N)

HT (p
v,C),

where λp is a positive constant that depends on q.

Modifying Axiom 3 as follows, we obtain an axiomatization of (HT) (see also [3]).

Axiom 3’ Let (N,C) be a totally ordered regular set system. For any v ∈ F(N,C), any Ck ∈ C
and any v2 = (0, u, 1), the entropy of vCk is

H(vCk) = H(v) +
(
v(Ck)− v(Ck−1)

)q ·H(0, u, 1).

Theorem 16 Let (N,N) be a regular set system and (N,N, v) a fuzzy measure. Then there
exists the unique function satisfying Axioms 1, 2, 3’, 4 and 5, and it is given by HT .

4. Solution of cooperative game
We call a function v : N → IR a characteristic function of the cooperative game if it satisfies
v(∅) = 0. Now we consider N is a set consisting of n players. Then a subset of N is called a
coalition, and the characteristic function v means the profit by coalitions of n players. We denote
the characteristic function by the triplet (N,N, v) in the same manner as the fuzzy measure and
we call it generalized cooperative game or simply game. (N, 2N , v) is a classical cooperative
game. The solution is the function from the whole set of the game v to n-dimension real which
measures each player’s contribution or share-out. The Shapley value is the most important
concept as a solution of the game, and they are characterized by natural axiomatizations [12].
We have generalized the Shapley value for applying games defined on N ⊆ 2N which satisfies
a kind of regularity, not only defined on 2N [5][7]. Our generalization make the Shapley value
applicable to more general games, for example multi-choice game [8], bi-capacity [4], games on
anti-matroid [1]. We have also shown an axiom system which consists of six axioms characterizing
this generalized the Shapley value.

We denote the set of all games defined on the regular set system (N,N) by G(N,N). Let Σn

be a all regular set of N = {1, 2, . . . , n} and define GR :=
∪∞

n=1

∪
N∈Σn

G(N,N), that is, all of

the games defined on regular set systems, and GP :=
∪∞

n=1 G(N, 2N ), that is, all of the games
defined on power sets.

Definition 17 (original Shapley value [12]) For v ∈ GP , the Shapley value of v, Φsh(v) =
Φsh(N, 2

N , v) := (ϕ1sh(v), . . . , ϕ
n
sh(v)) ∈ [0, 1]n is defined by

ϕish(v) = ϕish(N, 2
N , v) :=

∑
E⊆N\{i}

γn|E|(v(E ∪ {i})− v(E)), i = 1, . . . , n.

We denote Φ(N,N, v) and ϕi(N,N, v) instead of Φ(v) and ϕi(v) for clarifying the domain of
v.

It is known that the Shapley value is represented with maximal chains as follows.

ϕish(v,N, 2
N ) =

1

|M(2N )|
∑

C∈M(2N )

(v(C∗(i) ∪ {i})− v(C∗(i))), i = 1, . . . , n,

where C∗(i) := sup{C ∈ C | C ̸∋ i}.
Faigle and Kern had defined a value for applying the generalized cooperative game using the

concept of the maximal chain. We extend their value for applying to more general cases.

Mathematical Aspects of Generalized Entropies and their Applications IOP Publishing
Journal of Physics: Conference Series 201 (2010) 012014 doi:10.1088/1742-6596/201/1/012014

5



Definition 18 (Generalization of Shapley value) For v ∈ GR, the solution Ψ(v) =
Ψ(N,N, v) := (ψ1(v), . . . , ψn(v)) ∈ IRn of (N,N, v) is defined by

ψi(v,N,N) :=
1

|Mn(N)|
∑

C∈Mn(N)

(v(C∗(i) ∪ {i})− v(C∗(i))), i = 1, . . . , n.

The original Shapley value is characterized by several reasonable axioms.

Axiom 6 (efficiency) For any v ∈ GP ,∑
i∈N

ϕi(v) = v(N).

Axiom 7 (0-valued for null player) Fix v ∈ GP . For any null player i ∈ N , i.e.,
v(A ∪ {i}) = v(A) for any A ∈ N \ {i}, ϕi(v) = 0 holds.

Axiom 8 (symmetry) If i, j ∈ N are symmetry of v ∈ GP , i.e., v(A ∪ {i}) = v(A ∪ {i}) for
any A ∈ N \ {i, j}, ϕi(v) = ϕj(v) holds.

Axiom 9 (linearity) For any v, w ∈ GP , Φ(v + w) = Φ(v) + Φ(w) holds.

Theorem 19 Let (N, 2N , v) be a game. Then there exists the unique function Φ : GP → IRn

satisfying Axioms 6, 7, 8 and 9, and it is given by Φsh.

For yielding to our generalized value, we generalize axioms the above and add one more
axiom. We denote the set of all game defined on n-length chain (N,C) by G(N,C) and define
GC :=

∪∞
n=1 G(N,C), that is, all of the games defined on regular set systems which are chains.

Axiom 6’ (efficiency) For any v ∈ GP ∪ GC∑
i∈N

ϕi(v) = v(N).

Definition 20 (null-player of v on the set system) i is called null-player if i ∈ N satisfies
that v(A ∪ {i}) = v(A) whenever A ∈ N, A ∪ {i} ∈ N, ϕi(v) = 0.

Axiom 7’ (0-valued for null-player) Fix v ∈ GP ∪ GC. For any null-player i ∈ N, ϕi(v) = 0
holds.

Axiom 8’ (symmetry) Let σ be a permutation on N . For any v ∈ GP ∪ GC ,

ϕi(N, 2N , v) = ϕσ(i)(N, 2N , σ ◦ v), ϕi(N,C, v) = ϕσ(i)(N, σ(C), σ ◦ v),

where σ(C) := {σ(A) | A ∈ C}, σ ◦ v(S) := v(σ−1(S)), S ∈ σ(C).

Axiom 9’ (linearity) For any v, w ∈ GP ∪ GC , Φ(v + w) = Φ(v) + Φ(w) holds.

For yielding to our generalized value, we generalize axioms the above and add one more
axiom.

Axiom 10 (convexity) Let (N,N), (N,N1), (N,N2), . . . , (N,Nm) be regular set systems
satisfying M(N) = M(N1)∪· · ·∪M(Nm) and M(N1)∩· · ·∩M(Nm) = ∅ and v be a game on N.
Then there exists α1, . . . , αm ∈]0, 1[, with

∑m
k=1 αk = 1 such that for every game v ∈ G(N,N),

Φ(v) = α1Φ(v|N1) + · · ·+ αmΦ(v|Nm).

Mathematical Aspects of Generalized Entropies and their Applications IOP Publishing
Journal of Physics: Conference Series 201 (2010) 012014 doi:10.1088/1742-6596/201/1/012014

6



Theorem 21 Let (N,N) be a regular set system and (N,N, v) a game. Then there exists the
unique function satisfying Axioms 6’, 7’, 8’, 9’ and 10, and it is given by Ψ.

Our new axioms 6’, 7’, 8’ and 9’ include axioms 6, 7, 8 and 9, respectively, and assertion of the
Theorem 21 includes the theorem 19, so that our new system of axioms is suitable for a solution
of the cooperative game.

We treat cooperative games defined on regular set systems. Most cooperative games which
appear in applications can be regarded as games on regular set systems using by a kind of
translations (See [5]).

Proof of Theorem 21 Assume that Φ satisfies axioms 6’,7’, 8’, 9’ and 10.
(i) Case N is a chain. Define vj ∈ GC as

vj(S) :=

{
1, |S| ≥ j,
0, otherwise.

By axioms 6’ and 7’, for any λ ∈ IR, it holds that

ϕi(λvj) =

{
λ, {i} = Cj \ Cj−1,
0, otherwise,

that is,
ϕi(λvj) = λvj(C∗(i) ∪ {i})− λvj(C∗(i)).

v ∈ GC is identified by v(C1), . . . , v(Cn), so that we can regard v ∈ GC as the element of
n-dimension vector space. Since the linear independency of vj , j = 1, . . . , n, for v ∈ GC , there
exist λj , j = 1, . . . n with

v =

n∑
j=1

λjvj

such that

v(Cj) =

n∑
j=i

λj.

By axiom 9’, for any v ∈ GC , it holds that

ϕi(v) = ϕi

 n∑
j=1

λjvj

 =

n∑
j=1

ϕi(λjvj) =

n∑
j=1

{λjvj(C∗(i) ∪ {i})− λjvj(C∗(i))}

=

n∑
j=i

{λjvj(C∗(i) ∪ {i})− λjvj(C∗(i))} = v(C∗(i) ∪ {i})− v(C∗(i))

and Φ = Ψ.
(ii) Case N = 2N . By axiom 10, there exist αC ∈ [0, 1],C ∈ M(2N ) with

∑
C∈M(2N ) αC = 1

such that for any v ∈ GP
ϕi(v) =

∑
C∈M(2N )

αCϕ
i(v|C) (1)

holds.
Define N{i} := {S ∈ 2N | S ⊆ {i} or S ) {i}}, i = 1, . . . , n, then by axiom 10 there exist

β1,1, . . . , β1,n with β1,1 + · · ·+ β1,n = 1 such that for any v ∈ GP ,

ϕi(v) = β1,1ϕ
i(v|N{1}) + · · ·+ β1,nϕ

i(v|N{n})
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holds.
Assume that β1,1, . . . , β1,n are not unique and there exists another representation

ϕi(v) = β′1,1ϕ
i(v|N{1}) + · · ·+ β′1,nϕ

i(v|N{n}).

Defining vj ∈ GP as

vj(S) :=

{
1, |S| ≥ j,
0, otherwise,

players except i are null-players of v1|N{i} , so that for any j ̸= i, ϕi(v|N{j}) = 0 holds and

ϕi(v1) = β1,iϕ
1(v1|N{i}), ϕi(v1) = β′1,iϕ

1(v1|N{i}).

Hence β1,i = β′1,i, so that β1,i is unique. Moreover let σ be a permutation of players i1 and i2,
then by axiom 8’ for any i1, i2 ∈ N ,

ϕi1(N,N{i1}, v1|{i1}) = ϕσ(i1)(N, σ(N{i1}), σ ◦ v1|{i1})
= ϕi2(N,N{i2}, v1|{i2})

and since any players i1 and i2 ∈ N are symmetry of v1, for any i = 1, . . . , n,

ϕi(v1) = β1,iϕ
1(v1|N{1}) = ϕ1(v1),

so that we obtain β1,1 = · · · = β1,n = 1/n. Next define N{1,i} := {S ∈ N{1} | S ⊆ {1, i} or S )
{1, i}}, i = 2, . . . , n, then by axiom 10 there exist β2,2, . . . , β2,n with β2,2 + · · · + β2,n = 1, such
that for any v|N{1} ∈ G(N,N{1}), it holds that

ϕi(v|N{1}) = β2,2ϕ
i(v|N{1,2}) + · · ·+ β2,nϕ

i(v|N{1,n}).

Players except i are null-players of v2|N{2,i} , so that for any j ̸= i, ϕi(v|N{1,j}) = 0 holds and

since for i = 2, . . . , n, we have ϕi(v2|N{1}) = β2,iϕ
i(v2|N{1,i}), β2,i is unique, and by axiom 8’

we have β2,2 = · · · = β2,n = 1/(n − 1). Similarly, define N{1,...,k,i} := {S ∈ N{1,...,k} | S ⊆
{1, . . . , k, i} or S ) {1, . . . , k, i}}, then we have generally for i = k+1, . . . , n, by axiom 10 there
exist βk+1,k+1, . . . , βk+1,n with βk+1,k+1 + · · · + βk+1,n = 1 such that for any v|N{1,...,k} ∈ G(N,
N{1,...,k}),

ϕi(v|N{1,...,k}) = βk+1,k+1ϕ
i(v|N{1,...,k,k+1}) + · · ·+ βk+1,nϕ

i(v|N{1,...,k,n})

holds.
Players except i are null-players of vk+1|{1,...,k,i}, so that for any j ̸= i, ϕi(v|N{1,...,k,j}) = 0

holds and since for i = k + 1, . . . , n, we have

ϕi(vk+1|N{1,...,k}) = βk+1,k+1ϕ
i(vk+1|N{1,...,k,k+1}) + · · ·+ βk+1,nϕ

i(vk+1|N{1,...,k,n})

= βk+1,iϕ
i(vk+1|N{1,...,k,i}),

βk+1,i is unique, and by axiom 8’ we have βk+1,k+1 = · · · = βk+1,n = 1/(n− k).
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For other terms, decomposing the set system to chains, we obtain

ϕi(v) = β1,1ϕ
i(v|N{1}) + · · ·+ β1,nϕ

i(v|N{n})

= β1,1
[
β2,2ϕ

i(v|N{1,2}) + · · ·+ β2,nϕ
i(v|N{1,n})

]
+ β1,2ϕ

i(v|N{2}) + · · ·+ β1,nϕ
i(v|N{n})

...

= β1,1 · · · ·βn−1,n−1ϕ
i(v|N{1,...,n−1}) + β1,1 · · · ·βn−1,n−2βn−1,nϕ

i(v|N{1,...,n−2,n})

+
∑

C∈M(2N )\(C1∪C2)

βϕi(v|C)

=
1

n!
ϕi(v|C1) +

1

n!
ϕi(v|C2) +

∑
C∈M(2N )\(C1∪C2)

βϕi(v|C),

where C1 := {∅, {1}, {1, 2}, . . . , N},C2 = {∅, {1}, {1, 2}, . . . , {1, . . . , n− 2}, {1, . . . , n− 2, n}, N}.
Therefore for (1) αC1 = αC2 = 1/n! are obtained. Similary αC,C ∈ M(2N ) \ {C1,C2} is

obtained uniquely as 1/n!.
Consequently, it holds that

ϕi(v) =
1

|M(2N )|
ϕi(v|C), (2)

and Φ = Ψ.
(iii) Case N is a general set system. Let N ( 2N . Since

M(2N ) = M(N) ∪
∪

C∈M(2N )\M(N)

C,

by axiom 10 there exist α, βC,C ∈ M(2N ) \M(N) with

α+
∑

C∈M(2N )\M(N)

βC = 1 (3)

such that for any v ∈ GP

ϕi(v) = αϕi(v|N) +
∑
C∈

M(2N )\M(N)

βCϕ
i(v|C) (4)

= α

 ∑
C∈M(N)

αCϕ
i(v|C)

+
∑

C∈M(2N )\M(N)

βCϕ
i(v|C) =

∑
C∈M(2N )

βCϕ
i(v|C),

where for C ∈ M(N) βC := ααC, holds. By (2) for C ∈ M(2N ) \ M(N) βC = 1/n! and for
C ∈ M(N) βC = ααC = 1/n!, and since (3)

α = 1− 1

n!
· |M(2N ) \M(N)| = 1− n!− |M(N)|

n!
=

|M(N)|
n!

, (5)

substituting (5) for (4), we obtain

ϕi(v|N) =
1

α

ϕi(v)− ∑
C∈M(2N )\M(N)

1

n!
ϕi(v|C)

 =
1

|M(N)|
∑

C∈M(N)

ϕi(v|C).

�
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On the other hand, we can give another different type of axiomatization for the generalization
of Shapley value, which can be characterized with the same concept of the entropy.

Axiom 11 (continuity) The function the function f(s, t) := ϕ1(0, s, t) is continuous for s on
IR.

Axiom 12 (efficiency) For any game (0, s, t) on 2, ϕ1(0, s, t) + ϕ2(0, s, t) = v(N) = t.

Axiom 13 (dual invariance) For any (0, s, t), Φ(0, s, t) = Φ(0, s, t)d holds.

Axiom 14 (embedding efficiency) For any v ∈ GC , any (0, s, 1) and any Ck ∈ C,
ϕi(v

Ck) = ϕi(v) for any i ̸= i′k, i
′′
k, ϕi′k(v

Ck) = ϕik(v) ·ϕ1(0, s, 1) and ϕi′′k (v
Ck) = ϕik(v) ·ϕ2(0, s, 1)

hold, where {ik} := Ck \ Ck−1 = {i′k, i′′k}.

Axiom 15 (permutation invariance) For any v ∈ GR and any permutation π on N satisfying
π(N) = N, ϕi(v) = ϕπ(i)(π ◦ v), i = 1, . . . , n holds.

We obtain the following theorem:

Theorem 22 ([7]) Let (N,N) be a regular set system and (N,N, v) a game. Then there exists
the unique function satisfying Axioms 11, 12, 13, 14 and 15, and it is given by Ψ.
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