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Abstract. Several molecular dynamics techniques applying the Tsallis generalized distribution

are presented. We have developed a deterministic dynamics to generate an arbitrary smooth

density function ρ. It creates a measure-preserving flow with respect to the measure ρdω
and realizes the density ρ under the assumption of the ergodicity. It can thus be used to

investigate physical systems that obey such distribution density. Using this technique, the Tsallis

distribution density based on a full energy function form along with the Tsallis index q ≥ 1 can
be created. From the fact that an effective support of the Tsallis distribution in the phase space

is broad, compared with that of the conventional Boltzmann-Gibbs (BG) distribution, and

the fact that the corresponding energy-surface deformation does not change energy minimum

points, the dynamics enhances the physical state sampling, in particular for a rugged energy

surface spanned by a complicated system. Other feature of the Tsallis distribution is that it

provides more degree of the nonlinearity, compared with the case of the BG distribution, in

the deterministic dynamics equation, which is very useful to effectively gain the ergodicity of

the dynamical system constructed according to the scheme. Combining such methods with

the reconstruction technique of the BG distribution, we can obtain the information consistent

with the BG ensemble and create the corresponding free energy surface. We demonstrate

several sampling results obtained from the systems typical for benchmark tests in MD and from

biomolecular systems.

1. Introduction

Tsallis’ statistics has been extensively investigated [1], and its studies include the fundamental

aspect of statistical physics [2] and various applications to physical systems, such as granular

matter and turbulence, and to data analysis for network flow and economics [3]. The explanation

in view of the Tsallis’ statistics are possible for certain physical phenomena that are intractable

by the conventional Boltzmann-Gibbs (BG) extensive statistics [4]. Among the properties

of this new statistics, we have paid much attention to the fact that the canonical ensemble

theory derived from microcanonical ensemble is not unique and that the Tsallis statistics can be

derived [5, 6, 7, 8]. Namely, the distribution representing a subsystem in a closed total system

is not limited to the BG distribution, but can be realized by the Tsallis distribution. Utilizing

the canonical ensemble for molecular dynamics (MD) is necessary in view of the comparison
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between the MD simulation and the experiment. MD is a method that calculates interactions

among microscopic particles composing the physical system and defines a time development of

the system, in order to obtain thermal and dynamical properties of the physical system [9].

Thus, the construction of an MD method realizing the Tsallis distribution is very interesting

and important.

In contrast to such a pure physical interest regarding the Tsallis distribution itself, there has

been a practical approach such that the Tsallis distribution is used as a tool for effective sampling

for the BG distribution, on the basis of the traditional statistical mechanics. BG distribution

has been intensively investigated also for biological systems, and many studies have revealed

that the properties of such systems are well described through the thermodynamical quantities,

including the free energy, based on the BG distribution. For example, a stable three-dimensional

protein structure is characterized by the lowest free energy state based on the BG distribution

among a variety of putative structures of a polypeptide, which has the appropriate amino-acid

sequence for an individual protein. However, such system has a complicated energy surface and

it is thus hard to obtain an accurate BG distribution. One of the advantages of using the Tsallis

distribution for the sampling of physical states is that we can deform the energy surface in a

tractable manner. Specifically, an effective support of the Tsallis distribution in the phase space

is broad, compared with that of the conventional BG distribution, since the Tsallis distribution

obeys the power law with respect to the energy and decreases gradually in the case of the Tsallis

index q > 1. Furthermore, the energy-surface deformation by the Tsallis distribution does not
change the energy minimum points. For these reasons, This distribution enhances to traverse

the energy well, without changing the stable states, and to effectively explore the wide region of

the phase space. Another advantage of using the distribution is brought when applying it to the

equations of motion of MD method. Specifically, we can effectively gain the ergodicity of the

dynamical system, which is required to ensure generating the target distribution. This is because

the Tsallis distribution provides a greater degree of the nonlinearity in the equations of motion.

In addition, owing to the fact that the Tsallis distribution explicitly equips its functional form,

we are free from the direct handling of the derivative of the energy density of states, which is

required in the flat distribution method such as multicanonical MD.

For the purpose mentioned above, we require constructing an MD method that

deterministically generates the Tsallis distribution. In this process, considering to the non-

uniquness of the canonical distribution suggested by the studies of the nonextensive statistics,

it is preferable to have the ability to generate an arbitrary distribution, rather than a specific

equilibrium distribution. Furthermore, in view of the sampling technique, it is flexible not to

limit the distribution. Thus, it is useful to construct an equation that realizes an arbitrary given

density function, although this is the opposite approach, where we find an underlying density

function in the given equations of motion. Regarding such an attempt, we demonstrate the

density dynamics in section 2. Applying this method to the Tsallis distribution, we introduce

an MD method generating the Tsallis distribution. This MD method is an extension of the MD

method that creates the BG distribution (section 3). Against certain physical systems intractable

by the conventional methods due to the limited ability to generate the BG distributions, accurate

and efficient results are given by the current method owing to the properties of the Tsallis

distribution and the equations of motion (section 4).

2. Density dynamics

Let ρ be a density function, i.e., a smooth, positive, and integrable function defined on a domain

Ω in RN . Consider an ordinary differential equation (ODE) having invariant density ρ; i.e., given
ρ becomes the density, with respect to Lebesgue measure dω on RN , of an invariant measure for
the flow {Tt : Ω→ Ω|t ∈ R} generated by an ODE

ω̇ = X(ω), (1)
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where X : RN ⊃ Ω → RN is a smooth, complete vector field. From a generalized Liouville’s

theorem, it is sufficient that the vector field X satisfies the Liouville equation [10]

div ρX = 0. (2)

It is shown that, by Birkhoff’s individual ergodic theorem [11], a time average of any function

f (a Borel measurable function on Ω with
R
Ω
|f | ρdω < +∞) has a long-time limit value for

ρdω-almost every initial point ω. Further, if the flow is ergodic with respect to the measure

space (Ω, LN∩Ω, ρdω),

lim
τ→∞

1

τ

τZ
0

f (Tt(ω)) dt =

Z
Ω

fρdω

,Z
Ω

ρdω (3)

holds almost everywhere. Substitution of f ≡ χA, the characteristic function for any Borel set

A ⊂ Ω, yields

lim
τ→∞

1

τ

τZ
0

χA (Tt(ω)) dt = const×
Z
A

ρ(ω)dω (a.e.), (4)

indicating that the probability density for the realization of point ω is proportional to the given

value ρ(ω). In the sense that an arbitrary density can be realized, we call (ρ,X), a doublet of
objective density ρ and a corresponding field X, density dynamics.

A specific form of objective X can be constructed by referring to the Nosé-Hoover (NH)

equation [12, 13, 14]. The NH equation is an ODE that can realize the BG distribution, and has

been extensively studied including the related ergodic property [15, 16, 17]. Now, the ODE [18]

is

ẋi = DpiΘ(ω), i = 1, . . . , n,

ṗi = −DxiΘ(ω)−DζΘ(ω) pi, i = 1, . . . , n, (5)

ζ̇ =
nX
j=1

DpjΘ(ω) pj − n,

with

Θ = − ln ρ : Ω→ R. (6)

Here the phase space point is represented by ω ≡ (x, p, ζ), where x ≡ (x1, . . . , xn) and
p ≡ (p1, . . . , pn) represent coordinates and momenta, respectively, of the physical system, and
ζ is an extended variable (N ≡ 2n + 1); DxiΘ(ω), DpiΘ(ω), and DζΘ(ω) denote the partial
derivative of Θ at ω with respect to xi, pi, and ζ, respectively. It can be directly checked that

the Liouville equation (2) holds. A certain condition is required for the function Θ to ensure

the completeness of X. We assume the fulfillment of this condition as well as the ergodicity.

Here, we have utilized the mathematical structure of invariant measure for the time

development of the system and based our formalism on the ergodicity. But, it is, in general,

difficult to judge exactly whether or not a given system is ergodic. Even if we can judge

it, the system is not necessarily ergodic. When the system is not ergodic, however, ergodic

decomposition theorem [19] ensures that on individual ergodic components, which uniquely

decompose the phase space, the corresponding ergodicities are valid. If physically meaningful

components are produced, it is natural to consider the ergodicity on each invariant set, provided

that such a set and the induced invariant measure can be explicitly described.
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3. Tsallis dynamics

The method introduced in the previous section is applied to the Tsallis distribution density of

the following form [20],

ρTsallis(x, p) = [1− (1− q)βE(x, p)]q/(1−q) , (7)

where E(x, p) is a total energy, the sum of kinetic energy K(p) ≡ 1
2
kpk2 and potential energy

U(x), which is defined on a domain D ⊂ Rn. The parameter q is the Tsallis index, for which we
treat q ≥ 1. The limit of the density as q → 1 is ρBG(x, p) ≡ exp [−βE(x, p)] , the traditional BG
density. In Eq. (7) we have considered the escort probabilities [4, 20], considering the normalized

q-expectation value of E, and the renormalized temperature T 0 with β = 1/kBT 0. We often shift
the origin of the energy value to handle the unknown energy minimum in the applications. It

is noted that our method is not restricted to the form given in Eq. (7), but available to utilize

the other forms, including the q-exponential function.

To apply the density, Eq. (7), to Eq. (5), we set

ρ (x, p, ζ) ≡ ρTsallis(x, p) ρz (ζ) . (8)

Here we have put a general form of the density component with respect to ζ, as ρz (ζ), which
should contribute to meet the condition for ρ on Ω ≡ D × Rn × R. Then Eq. (5) yields the
Tsallis dynamics (TD) [18, 21]:

ẋi = g(x, p) pi, i = 1, . . . , n,

ṗi = −g(x, p)DU(x)− τ (ζ) pi, i = 1, . . . , n, (9)

ζ̇ = g(x, p) kpk2 − nkBT 0,

where

g(x, p) ≡ q

1− (1− q)E(x, p)/kBT 0 ,
τ (ζ) ≡ −kBT 0D lnρz (ζ) .

Here we have multiplied the right-hand side of Eq. (9) by constant factor kBT
0, so that we get

variables x and p with the ordinary physical dimensions (similar procedure is clearly possible

in Eq. (5)). Corresponding to the fact that the q → 1 limit for Tsallis density (7) becomes the
BG density, substitution of q = 1 [and ρz (ζ) = exp

£−(β/2Q)ζ2¤] into TD equation (9), which
generates the Tsallis density, yields the NH equation, which generates the BG density. Namely,

the extensive limit of the TD is the (generalized) NH equation. As a similar method, that [22]

using only the potential energy U(x) (instead of the total energy) for defining the distribution
or that [23] targeting the superextensive region (0 < q < 1) has been proposed. The current
method first succeeded in generating the Tsallis distribution of the full energetic form in the

subextensive region (q > 1). Note that also a Hamiltonian approach to achieve the Tsallis
distribution, in conjunction with the Winkler’s method [24], was proposed [25].

Under the conditions stated above and the ergodicity, a long-time average value of physical

variable O represented by a function of x and p exists for almost everywhere and equals to the
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space average in the Tsallis distribution:

lim
τ→∞

1

τ

τZ
0

O (x (t) , p(t)) dt

=

Z
Ω

O(x, p) ρ(ω) dω

,Z
Ω

ρ(ω)dω (10)

=

Z
D×Rn

O(x, p) ρTsallis(x, p) dxdp

, Z
D×Rn

ρTsallis(x, p) dxdp .

We can reconstruct the BG distribution using ODE (9), by applying the re-weighting

technique [26]. Under the same assumptions, from Eq. (10) we see

O ρBG / ρTsallis

.
ρBG / ρTsallis =

Z
D×Rn

O(x, p) ρBG(x, p) dxdp

ÁZ
D×Rn

ρBG dxdp (a.e.) (11)

provided that the space integrals are finite. Therefore, an expectation of O in the BG distribution

is obtained, when we evaluate the long-time average of O scaled by the ratio ρBG / ρTsallis and the

long-time average of the ratio. In Eq. (11), the temperature T in ρBG(x, p) = exp [−E(x, p)/T ]
is not necessary to accord with T 0 defined in ρTsallis, but can be given by any positive value. In

addition, during a single process of integrating ODE (9) with a fixed T 0, we can calculate
the expectation values for many temperatures T = T1, T2, .... This means that many BG

distributions with individual temperatures can be realized in a single integration process of

the equation of motion. A suitable setting of the parameters in the distribution is not trivial

matter. An attempt of the setting for the purpose of the sampling of states is described in

Ref. [27].

4. Application of the Tsallis dynamics

As an illustration of the application of TD method to MD, we discuss how the problems in MD

can be solved, regarding the 1-dimensional harmonic oscillator (1HO) and 1-dimensional double-

well (1DW) systems. Harmonic oscillation becomes an approximation of the small oscillation

around the energy minima. However, even for such a simple motion, the correct BG distribution

cannot be successfully created, which is a peculiar problem in MD such as in the NH equation.

Most evident example is 1HO, in which the trajectory does not fully explore the phase space

and show nonergodic behaviours, leading to the failure of generating the BG distribution. This

failure would come from an “insufficient complexity” in the equations of motion, due to the fact

that the original 1HO Newton equation is a simple (integrable) and small system (“complexity”

of the original physical system is one of the factors (but an important factor) to characterize the

“complexity” in the equations of motion of MD). To solve this problem, several methods have

been proposed, where the number of the extended variables was increased. For example, by

increasing arbitrarily the number of thermostats and enforcing their coupling, the Nosé-Hoover

chain method [28] gains the complexity in the equations of motions and has improved the ability

to obtain ergodicity, even for a simple given system such as 1HO. Another route to gain the

complexity is found by the TD method, which uses only one extended variable. That is, by

increasing the nonlinearity in the equation of motion by using the “q-deforming” [18] of the NH

equation together with a suitable choice of ρz (ζ) , TD can generate the BG distribution for 1HO
when we recover the BG distribution by the re-weighting [29].

To explore the energy landscape it is necessary to visit other energy minima, by escaping the

harmonic-like motion in one energy well, through an unharmonic motion. The most fundamental
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model of such a motion is that in 1DW. As the energy well is deep, the trajectory is confined

over a long time, so that it needs much time to sufficiently sample the phase space, even if the

system is ergodic. Many BG dynamics (BGD), i.e., deterministic equation that can generate

the BG distribution in a direct way, have been proposed [30, 31, 32]. However, as the accuracy

of BGD is increased, the accuracy of the probability ∝ exp(−βE) even at a high energy barrier
will be increased, so that the simulation requires a long time to escape beyond such barriers.

This second problem in MD is emphasized as “increasing the complexity” of the system, in

contrast to the first problem stated above. TD solves this problem, using the slow decay feature

of the Tsallis distribution with respect to the energy, which means that high energy states can

be realized more frequently than those in the BG distribution and so overcoming the energy

barriers is enhanced. In systems having such energy surfaces, it is shown [21, 29] that much

effective sampling is performed in TD, compared with that in BGD.

Figure 1. Structural change of main chain of C-peptide obtained in (upper panel) TD

simulation and (lower panel) a conventional MD simulation.
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As an application of TD to biomolecular system, we show the results of C-peptide, which is

a fragment of bovine pancreatic ribonuclease A (PDB id: 1a2w). Figure 1 shows the results of a

numerical simulation of 5 ns of the peptide. An extended conformation of the molecule was used
as an initial condition. We observe that much effective conformational sampling was performed

by the TD (the upper panel of the figure), compared with the results of the conventional MD

(BGD at the temperature of 300 K; shown in the lower panel). In the BGD, getting trapped into
a local backbone structure is observed, while in the TD a variety of the structures, including

the α-helical structure (see e.g., 2.58 ns), which is considered to be the native structure, were
sampled much faster. Similar results were confirmed for different initial conditions.

For a development, a molecular-dynamics sampling scheme has been proposed [33] in which

any summation of multiple arbitrarily given distributions can be realized deterministically. This

method is also based on the density dynamics demonstrated in section 2.

5. Concluding remarks

We have constituted the density dynamics, which is a deterministic method to realize an

arbitrary density function. Applying this method to the Tsallis distribution density, we

constructed an ODE generating the Tsallis distribution that is described by both the coordinates

and the momenta and by the Tsallis index q ≥ 1, whereas such a construction was impossible in
conventional approaches. We demonstrated, via the investigations of 1HO and 1DW systems,

that the typical problems in MD were solved by the characteristic features of this dynamics.

Application to the peptide system shows that the current method provides efficient results

against the case in which the conventional deterministic method unsuccessfully sample the phase

space. Other related numerical techniques are shown in Ref. [34], and a recent development

relevant to the generalized ensemble method will be discussed in detail elsewhere.
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