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Ionization in positron- and positronium- collisions with
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UCL Department of Physics and Astronomy, University College London, Gower Street, London WC1E
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*permanent address: ATOMKI, Institute for Nuclear Research, Debrecen, Hungary

Abstract. Recent progress in the experimental study of positron- and positronium-induced ionization of
atoms and molecules is outlined. Investigations include integral and differential cross-sections, as well as
formation of positronium in the first excited state. Future prospects are discussed.

1. Introduction
The study of positron and positronium collisions with atoms and molecules is motivated by the need
to understand basic matter–antimatter interactions, to support the development of scattering theories, to
assist the analysis of astrophysical events and tests of QED bound-state problems as well as calculations
of radiation damage at the molecular level for positron-emission tomography e.g. [1–3].

In this article, we review recent progress made at UCL in the measurement of cross-sections
for ionization processes arising from collisions of positrons and positronium atoms with atomic and
molecular targets.

2. Positron induced ionization
In collisions between a positron and an atomic/molecular target (X), ionization may proceed via a number
of channels: annihilation, transfer and direct ionization. These are summarized, respectively, by reactions
1–3 below:

X+e+ −→ Xz++2γ +(z−1)e− (1)

X+e+ −→ Xz++Ps+(z−1)e− (2)

X+e+ −→ Xz++e++ze− (3)

where Ps and/orXz+ in the final state may be excited, andz corresponds to the number of electrons
removed from the target. IfX is a molecule, the above reactions may be accompanied by dissociation.
The total ionization cross-section (Qt

i , defined as the sum of the cross-sections for all ion producing
processes) is dominated by the cross-sections for Ps formation (QPs) and single direct ionization (Q+

i )
(reactions 2 and 3 withz= 1) above their respective thresholds,Ethr

Ps andEthr
i . Being an exothermic

reaction, annihilation is the only possible ionization channel belowEthr
Ps . It is considered generally

negligible except at very low energies [4], although enhancements in the annihilation probability have
been observed belowEthr

Ps near vibrational excitation thresholds and associated with the formation of
vibrational Feshbach resonances [3].
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Figure 1. Theoretical and experimental determination ofQt
i (e

+): Left: Hee—[5], #—[6], grey dashed
curve—[7], solid grey curve—[8]. Corresponding results for e− impact,Qt

i(e
−), shown for comparison:1—[9],3—[10]; Right: CO2,e—[11], 2—[12], ⊕—[13],1—Qt

i(e
−) [14].
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Figure 2. Left: Partitioning of Qt
i for CO2 [11, 15] into QPs—1andQ+

i —#. Right: Q+
i for CO2

compared with theory and experiment.e—[11], #—[13], 2—[14],3—Qdiss
i [13],1—Qdiss

i [15], all
curves—[16].Inset: normalized [15] and [13] to illustrate identical energy dependence.

Results ofQt
i(e

+) for He and CO2 are shown in figure 1 where some discrepancies may be noted
among experiments. However in He, there is excellent agreement between the data of [5] and the
coupled-pseudostate calculation of [7], the maximum being better described by the results of [8]. In
CO2, there is excellent agreement in shape between the high-resolution measurements of [12] and the
absolute determination of [11], the latter also agreeing in magnitude at higher energies with the earlier
data of [13].Qt

i(e
+) may be seen to exceed corresponding results for electron-impactQt

i (e
−) at low and

intermediate energies primarily due to Ps formation, as illustrated for CO2 in figure 2 (LHS). Whilst for
He (and indeed all the noble gases)QPs tends to zero around 100–150 eV, positronium formation in CO2

remains a significant channel at much higher energies [11].
Concerning direct ionization, as discussed in [2], there is good accord for He among experimental

determinations e.g. [5, 17, 18] and with theories [7, 19–22], however the energy region within 1 eV of
the threshold remains a major experimental challenge. In the case of CO2, as shown in figure 2 (RHS),
there is excellent shape agreement over the whole energy range between experimental results [13, 15], the
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Figure 3. Left: QPs for He,e—[5], #—[23], dotted black curve—[24], curve withA—[25], black
chain curve—[7], solid black curve (from 50 eV)—[26], curve with + —[27], black double chain curve—
[28], curve with@—[29], curve with×—QPs(2P) [7], 1—QPs(2P) [30]. Centre: QPs for Ar, e—
[31], #—[32],6—[33], ⊕—[34], 2— [35], �—[36],3—[37] LL, 1—[37] UL, solid black curve—
[38], dashed black curve—[39], dotted black curve—[40], curve with×—QPs(2P) [38], 7—QPs(2P)
[30]. Right: QPs for Xe (symbols as for Ar).

discrepancy being entirely attributable to the electron data chosen for normalization (as illustrated in the
inset) whilst the distorted-wave-Born-approximation (DWBA) results of [16] exceed experimental data
by a factor of 2–3. At its maximum, the cross-section for dissociative direct ionization (Qdiss

i ) accounts
for approximately 20% ofQt

i(e
+) for CO2 [15].

Convergence has considerably improved in recent measurements ofQPs for the inert atoms [2],
as illustrated in figure 3 for He, Ar and Xe. Whilst in helium, there is also good agreement
between experimental and theoretical determinations, the situation for more complex targets is less
satisfactory. Differences remain among experiments concerning structure around the peak and even
greater discrepancies exist between experiment and theory, the latter overestimating measurements by a
factor 2–3, although [40] and [41] found that inclusion of higher order processes leads to a significant
reduction of the cross-section magnitude. Both the existence and the significance of the structure
apparent in some of the experiments has been the subject of some speculation. Ps formation from higher
thresholds has been considered either via capture of an inner-shell (ns) electron or Ps formation in an
excited state (Ps∗). An analysis based on an empirical scaling for ionization cross-sections [42] predicted
increasing contributions of Ps∗ with decreasing ionization energy,I [31]. A DWBA method [38] found
nscontributions to be very minor whilst Ps∗ gave rise to structure similar to that observed experimentally.
Cross-sections for formation of Ps into the 2P state (QPs(2P)) have now been measured [30]. The results
are included in figure 3 where they are compared with corresponding theories. In He, the best agreement
is with the coupled-pseudostate calculation [7]. In Ar and Xe, whilst the DWBA overestimatesQPs(all
n) by factor 2–3, its predictions agree fairly well for 2P states. Interestingly,QPs(2P) is found to make a
significant contribution toQPs(all n) which increases from 6% in He to 23% in Xe.

Differential investigations of ionization by positron projectiles are scant. Triple differential studies
have been carried out at UCL around 0◦ by measuring coincidence between scattered e+ and ionized
e−. At 100 eV incident positron energy, a small peak was observed in the spectrum of the electrons
ejected from the H2 target at half-the-residual energy,Er [47], a signature of the electron-capture to
the continuum (ECC) phenomenon predicted ten years earlier [48]. Instead at 50 eV, an asymmetry
between the energy spectra of electrons and positrons was found [49]. As shown in the LHS of figure
4, the electron spectrum was shifted by around 1.6 eV with respect to quantum theoretical expectations
[44] whilst being in good agreement with classical-trajectory-Monte -Carlo calculations [45]. This latter
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Figure 4. Left: Experimental and theoretical results for triply differential cross-sections for ejected
electrons in 50 eV positron collision with H2, D2 and He:e—D2, #—H2, 3—He at sameEr [43],
solid curve—fit to experimental data as a guide to the eye; dashed curve—[44], double chain curve—
[45], dotted line—Er/2. Right: Double differential cross-section as a function of the energy loss of the
scattered e+ projectile in coincidence with H2O+ fragments:e—100 eV [46],3—153 eV [46].

approach, however, failed to describe the 100 eV data [47]. All these findings are the subject of current
theoretical scrutiny (e.g. [50]). More recently, investigations have been extended to H2O because of
its universal importance and in order to probe whether its strong dipole moment, responsible for strong
forward-scattering of electron projectiles [51], might result in the ECC cusp becoming conspicuous at the
doubly differential level as is the case by ion impact [52]. The energy distributions of e+ scattered around
0◦ from H2O were measured in coincidence with the remnant ions (H2O+, OH+ and H+) at 100 and 153
eV incident energy [46]. The maxima of the double differential cross-ections (DDCS) associated with
the production of OH+ and H+ were found to be about 5–10 times smaller than that for H2O+ and the
shape was observed to be similar to non-polar targets. As shown in the RHS of figure 4, at both incident
energies, a small shoulder in the energy loss spectra associated with H2O+ production was seen around
28 eV. This feature appears consistent with e− momentum spectroscopy results [53] which identifies it
with the onset of a weak shake-up band at 27.1 eV connected with the 2a1 orbital. Further investigations
would be justified.

3. Positronium induced ionization
A positronium atom makes an interesting projectile as it has no nucleus, its constituents having the
same mass and opposite charge [e.g. 2]. Since both target and projectile have structure, ionization may
be accompanied by excitations of either or both colliding partners, namely: projectile fragmentation,
Ps− formation, target ionization, projectile fragmentation with target excitation, target ionization with
projectile excitation and, finally, projectile fragmentation with target ionization, as summarised in
reactions 4–9 below:

A+Ps→ A +e++e− (4)

A+Ps→ A++Ps− (5)

A+Ps→ A++e−+Ps (6)

A+Ps→ A∗+e++e− (7)

A+Ps→ A++e−+Ps∗ (8)

A+Ps→ A++2e−+e+ (9)

Reaction 4 is the only one not involving a change in the internal energy of the target and is referred to
as target-elastic (TE); all the others are said to be target-inelastic (TI). Experimentally, these have been
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Figure 5. Top: The fragmentation cross-sections for Ps impact on He.a—Q+
f [54], e—Q+

f [55],

#—Q−

f [55], curve with@—TE [56], long dashed curve—TE [57], solid curve—TE [58], double chain
curve—TE [59], medium dashed curve—TE [60], curve with×—TE+TI Q+

f [61], short dashed curve—
TE+TI Q−

f [62]. Bottom: The absolute single differential cross-sectiondQ+
f /dÈ for the fragmentation

of Ps in collision with He atoms. In this figure, longitudinal energy refers to that of the ejected positron
andEPs to the incident energy of the Ps projectile.e—[54], solid curve—[57]×0.5, dashed curve—
[60], 3—Average value< 1 eV [60].
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investigated by detecting the positron or the electron in thefinal state: the total Ps fragmentation cross-
sectionQ+

f (corresponding to the sum of the cross-sections for all processes involving the break-up of
Ps) is measured when detecting positrons; the total fragmentation cross-sectionQ−

f (corresponding to the
sum of the cross-sections for all target and projectile ionization channels) is determined when detecting
electrons. The differential cross-section with respect to the (longitudinal) energy of the ejected positron
(dQ+

f /dÈ ) has also been determined by a time-of-flight method [54] and by retarding field analysis
[55, 63].
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Figure 6. Left: The fragmentation cross-section for Ps impact on Xe.e—Q+
f [63], #—Q−

f [63], solid
curve—TE [61], dashed curve—TE+TIQ+

f [62], dotted curve—TE+TIQ−

f [62]. Right: Longitudinal

energy distributions of the ejected positrons form Ps collisions with Xe at 30 eV.e—[63], solid line—
[61]; #—corresponding He data×4 [54], dashed line— He×4 [60].

The results for He are shown in figure 5. In the top figure, bothQ+
f andQ−

f may be seen to agree
with a coupled-pseudostate calculation [58] and an impulse approximation [60] supplemented by a first
Born calculation for target inelastic processes [62]. ThedQ+

f /dÈ shown in the bottom figure display
a peak which grows in significance with positronium incident energy and arises from the occurrence
of electron-loss to the continuum (a phenomenon related to ECC) where, following Ps break-up, the
electron and the positron in the final state move with a small relative velocity. The agreement in shape
with the results of the classical-trajectory Monte Carlo calculation [57] is very good and that with the
impulse approximation [60] is good both in shape and absolute magnitude.

In figure 6, corresponding results for xenon are displayed. On the left,Q−

f may be seen to exceed
Q+

f at 30 eV, implying a degree of target ionization, contrary to theoretical expectations. On the right,
the experimentaldQ+

f /dÈ results for Xe [63] are compared with theory [61] with which they are in
broad accord. Also included in the figure are the corresponding experimental results for He multiplied
by a factor of 4 for shape comparison: the distributions for the two targets appears very similar, except
perhaps at the lowest energy.

4. Conclusions and outlook
Recent progress in the study of ionization induced by positron and positronium impact on atoms and
molecules has been presented. Results now comprise both integral and differential cross-sections,
with and without Ps formation in the case of positron impact, and with and without target ionization
for positronium projectiles. Whilst exploration of molecular targets is comparatively less advanced,
investigations are now progressing to photon–ion coincidences to probe reactions where the target ion
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is left in an excited state [11]. The pace is expected to quicken further with the realization of positron
reaction microscopes which are currently under development [e.g 64].
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[15] Cooke D A, Murtagh D J, KövéŕA and Laricchia G 2008Nucl. Instr. Meth. B266466
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