Analytical model for the TeraHertz current noise in nanometric Schottky-barrier diodes and heterostructure barrier varactors

To cite this article: F Z Mahi et al 2009 J. Phys.: Conf. Ser. 193 012067

View the article online for updates and enhancements.
Analytical model for the TeraHertz current noise in nanometric Schottky-barrier diodes and heterostructure barrier varactors

F. Z. Mahi, A. Helmaoui
Physics of Semiconductor Devices Laboratory (LPDS), University of Bechar, Algeria
E-mail: fati.za.mahi2002@yahoo.fr

L. Varani
Institute of Electronics of the South (IES - CNRS UMR 5214), University of Montpellier, France

P. Shiktorov, E. Starikov and V. Gruzhinskis
Semiconductor Physics Institute, Vilnius, Lithuania

Abstract. In this paper we propose an analytical model for the calculation of the spectral density of current fluctuations in Heterostructure-barrier varactors. The structures of the calculated spectra are analyzed in terms of physical processes useful to optimize the device parameters for the extraction of the high-order harmonics.

1. Introduction
The varactor devices, like the Schottky barrier diode (SBD) and the heterostructure barrier varactor (HBV) diode, are nonlinear elements able to generate high-frequency signals by frequency multiplication [1]. More recently, the HBV diodes have emerged as interesting competitors of SBD as frequency multipliers due to their symmetric capacity-voltage (C-V) and antisymmetric current-voltage (I-V) characteristics [2,3], which lead to produce only odd harmonics compared to the SBD [1]. Under high-frequency large-signal operation, a critical parameter assessing their electrical performances is the intrinsic current noise, which constitutes also an important limit for the extraction of the high-order harmonics at the basis of terahertz generation. In this contribution we present an extension of the analytical model proposed in Ref. [4] which gives a description of the resonances appearing in the high frequency region.

2. Analytical Model
We apply the analytical model described in Ref. [4] to calculate the intrinsic high-frequency noise spectrum in a typical $n^+n – barrier – nn^+$ HBV structure shown in Fig. 1. Here l_i is the length of the i-regions with N_2 and N_4 the dopings of the first and second n regions, respectively, N_1 and N_3 the dopings of the first and second n^+ regions, respectively, and l_d the length of the depletion region (see, e.g. [3]).
Here the homogeneous part of the global perturbation previous system of equations (1) and (2) can be rewritten in matrix form as:

\[
\begin{align*}
\delta E \equiv & \begin{cases}
\Delta E - \left(\frac{e}{\epsilon_0}\right) N_1 \delta x_1 & 1^{st} n^+ \text{ region} \\
\Delta E - \left(\frac{e}{\epsilon_0}\right) N_2 \delta x_2 & 1^{st} n^- \text{ region} \\
\Delta E - \left(\frac{e}{\epsilon_0}\right) N_3 \delta x_3 & \text{depletion region} \\
\Delta E - \left(\frac{e}{\epsilon_0}\right) N_4 \delta x_4 & 2^{nd} n^+ \text{ region} \\
\end{cases}
\end{align*}
\]

(1)

Here the homogeneous part of the global perturbation \(\Delta E = \frac{e}{\epsilon_0 L} \sum_{i=1}^{4} N_i \delta x_i \) is determined under constant applied voltage operation and the variation of the voltage drop equals to zero \(\delta U = 0 \), where \(i = 1, 2, 3, 4 \) is the number of regions. According to the symmetry of HBV structure \(l_1 = l_3 = l_+ \), \(l_2 = l_4 = l_- \) and \(l = 2l_+ + 2l_- + l_d \) is the total length of the HBV [2,3]. To describe evolution of these shifts we take the advantage of the Langevin approach formulated by the following system of equations:

\[
\frac{d^2}{dt^2} \delta x_i + \nu_i \frac{d}{dt} \delta x_i = \frac{e}{m} \delta E_i(x) + f_i
\]

(2)

where \(f_i \) is the Langevin force in the \(i \)-region. For the numerical results we assume that \(N_1 = N_3 = N_+ \), \(N_2 = N_4 = N_- \) and the plasma frequency is defined as \(\omega_n^2 = (e^2/\epsilon_0 m)N_i \). The previous system of equations (1) and (2) can be rewritten in matrix form as:

\[
\begin{pmatrix}
\begin{pmatrix}
a_{11} & a_{21} & a_{31} & a_{41} \\
a_{12} & a_{22} & a_{32} & a_{42} \\
a_{13} & a_{23} & a_{33} & a_{43} \\
a_{14} & a_{24} & a_{34} & a_{44}
\end{pmatrix} & \begin{pmatrix}
\delta x_1(\omega) \\
\delta x_2(\omega) \\
\delta x_3(\omega) \\
\delta x_4(\omega)
\end{pmatrix}
\end{pmatrix}
\begin{pmatrix}
f_1(\omega) \\
f_2(\omega) \\
f_3(\omega) \\
f_4(\omega)
\end{pmatrix}

(3)

The expressions of the matrix elements are: \(a_{11} = a_{33} = -\omega^2 + i\omega\nu_+ + \omega_+^2(1 - r_+) \), \(a_{12} = a_{41} = a_{24} = a_{32} = a_{34} = a_{42} = -\omega \omega_+ \), \(a_{13} = a_{21} = a_{31} = a_{43} = -r_+ \omega_+ \), \(a_{22} = a_{44} = -\omega^2 + i\omega\nu_- + \omega_-^2(1 - r_-) \), \(r_+ = \frac{l_+}{l} \) and \(r_- = \frac{l_-}{l} \) are the relative lengths of the \(n^+, n^- \) regions. In accordance with the conservation law of the total current, the current fluctuation \(\delta J \) in the external circuit is determined by the rate of change of the surface density \(\delta \sigma_M = \epsilon_0 \Delta E \) [4]:

\[
\delta J = \frac{eA}{L} \sum_{i=1}^{4} N_i l_i \frac{d}{dt} \delta x_i
\]

(4)

For uncorrelated (in time and space) Langevin forces their spectral density normalized to the total number of free carriers in the \(i \)-th region takes the form:

\[
S_{ij} = 4kT \left(\frac{1}{Am} \frac{\nu_i}{N_i l_i} \right)
\]

(5)
By using the equations (4) and (5) and the b_{ij} elements of the inverse matrix of equation (3) the spectral density can be represented as:

$$S_{ii}(\omega) = \left(\frac{e\lambda}{L} \right)^2 \sum_{j=1}^{4} \sum_{i=1}^{4} N_{i} l_{i} b_{i,j} S_{jj}^{2}$$ \hspace{1cm} (6)$$

Let us stress that by keeping in equation (3) only the elements $a_{11}, a_{12}, a_{21}, a_{22}$ we obtain the analytical model for the SBD noise developed in [4].

3. Results and discussion

The intrinsic current noise obtained for a GaAs SBD is illustrated in Figure 2, with a carrier momentum relaxation rate $\nu = 1.364 \times 10^{12}$ s$^{-1}$ similar to the value obtained by Monte Carlo simulation [5]. The results of figure 2 obtained by this analytical model are compared by the results of SBD device in article [5].

Figure 2. Spectral density of current fluctuations per unit surface in a GaAs $n^+ n$-metal SBD with: $l_+=l_-=0.1 \mu$m and $N_- = 5 \times 10^{16}$ cm$^{-3}$. Curve 1: homogeneous material ($N_+ = N_-$) and $l_d = 0$; curve 2: diode with $l_d=0$ and $N_+ = 10 N_-; \text{ curve 3: } N_+ = N_- \text{ and } \text{depletion region } l_d = 0.01 \mu$m and \text{ curve 4: } \text{diode with } l_d = 0.01 \mu$m and $N_+ = 10 N_-$. For the case of a complete SBD (curve 4 in Fig.2), the spectral density exhibits an initial growth proportional to ω^2 followed by two resonant peaks in the low and high frequency regions corresponding respectively to the carriers reflected by the SBD barrier and to the hybrid plasma resonance frequency.

Figure 3. Spectral density of current fluctuations in a GaAs $n^+ n$-metal SBD with: $l_+ = 0.05 \mu$m, $l_- = 0.15 \mu$m, $N_- = 5 \times 10^{16}$ cm$^{-3}$. Curve 1: applied voltage is $U = 0.7$ V; Curve 2: $U = 0.75$ V; Curve 3: $U = 0.8$ V; Curve 4: $U = 0.85$ V; Curve 5: $U = 0.9$ V; Curve 6: $U = 0.95$ V and Curve 7: $U = 1$ V.

In Fig. 3 the absence and presence of the depletion region is controlled by the applied voltage U. We observe a red-shift of the low-frequency resonance peak by increasing the applied voltage. The HBV spectral density is similar to the spectrum of the SBD with a difference in the position of the resonance peaks. For a complete HBV structure (curve 4 of Fig.4) the two resonance peaks appear near 1 and 20 THz compared to the SBD structure (curve 4 of Fig.2) where the peaks appear at 0.3 and 3 THz. Therefore the resonance frequency position increases significantly.
4. Conclusion

We have proposed an analytical model of the intrinsic noise in HBV structures which describes the high-frequency part of the noise spectrum. The low-frequency shot noise is not considered in the model. The model proposed for the HBV can calculate the intrinsic noise of i regions of any structure and the results can be useful for optimizing the device parameters for the extraction of the high-order harmonics.

The financial support of the Lithuanian State Science and Studies Fundation contract n. P-01/2007 is acknowledged.

References