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Grenoble cedex 09, France
2 Department of Physics and Astronomy, University College London, Gower Street, London
WC1E 6BT, UK
3 Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
4 Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309-0440,
USA

E-mail: afaure@obs.ujf-grenoble.fr

Abstract.
Electrons are known to be efficient in rotationally exciting molecular ions in cold ionized

media. Rotational effects have also been shown to affect the dissociative recombination
(DR) process. Electron collisions are thus expected to play a significant role in the
thermalization and dissociation dynamics of molecular ions, both in the laboratory and in space.
Using the molecular R-matrix method combined with the Adiabatic-Nuclei-Rotation (ANR)
approximation corrected for threshold and closed-channel effects, we have computed new rate
coefficients for the rotational excitation of H+

3 and HCO+ by electrons at temperatures from 10
to 1 000K. At temperatures above rotational thresholds, rotational rates are found to compete
or even dominate those of dissociative recombination, suggesting that electron collisions provide
a possible source of rotational (de)excitation in DR measurements.

1. Introduction
Since the discovery of CH+ in space 70 years ago [1], more than a dozen of positive molecular
ions have been detected in the interstellar medium. Among these, H+

3 and HCO+ and their
deuterated isotopologues are particularly important in the context of interstellar gas-phase
chemistry [2]. Along with CH+, H+

3 and HCO+ have also been detected in diffuse clouds where
the fractional ionization is high (n(e)/n(H)∼ 10−4). In such environments, electrons play a very
important role in the destruction (through DR) and in the thermalization (through inelastic
collisions) of positively charged species. Moreover, these two processes are closely related because
rotational effects can significantly affect the DR process, as shown for example in the case of H+

2

[3, 4] or H+
3 [5, 6]. These experimental and theoretical studies indeed suggest that rotational

effects can increase or decrease the DR rate coefficients by factors up to ∼ 3. Thus, the most
recent calculations on H+

3 [6] have shown that an improved agreement with the experimental
DR measurements can be obtained by assuming rotational temperatures significantly larger
than those derived in the experiments, suggesting the possibility that the ions get rotationally
’hot’ before the DR rate is measured. Interestingly, in the case of diatomic ions, a theoretical
study has shown that rotation plays a role mainly for the indirect DR process and for light

Seventh International Conference on Dissociative Recombination (DR2007) IOP Publishing
Journal of Physics: Conference Series 192 (2009) 012016 doi:10.1088/1742-6596/192/1/012016

c© 2009 IOP Publishing Ltd 1



molecules [7]. It is therefore not clear whether rotational effects are significant in the case of
heavy polyatomic ions like HCO+, even if the indirect mechanism is dominant [8].

In the astrophysical context, the sensitivity of the DR process to the rotational temperature
of the ions is particularly important because the rotational populations of interstellar molecules
are generally not at thermal equilibrium. The accurate determination of the ion abundances
therefore requires rotationally resolved rate coefficients for both inelastic collisions and DR. This
is particularly important for H+

3 whose simple chemistry has been used to infer the primary
cosmic-ray ionization rate in the diffuse interstellar medium [9]. It is to be noted, in this
context, that the rotational dependence of the H+

3 DR rate is ignored in current astrochemistry
studies (e.g. [10, 11]). In the present paper, we discuss the competitive role of rotational and
dissociation dynamics at low energy for the two astrophysically relevant ions H+

3 and HCO+.
The objective is to illustrate the relative rate of rotational (de)excitation and DR for a non-polar
and a highly polar ion. Section 2 briefly describes the theoretical approach employed to compute
the rotational rate coefficients. Illustrative results are presented in Section 3 while conclusions
are drawn in Section 4.

2. Theory of rotational excitation
The reference method for obtaining electron-impact excitation rates has been the Coulomb-Born
(CB) approximation [12, 13]. This approach assumes that the collisional excitation rates are
determined by long-range interactions. A standard further approximation is to consider only the
dominant long-range term. Within this model, the CB theory predicts that only single jumps
in rotational quanta (∆J = 1) are allowed for polar species. Recent R-matrix calculations
combined with the adiabatic-nuclei-rotation (ANR) approximation have been applied to several
molecular ions and have shown that the inclusion of short-range interactions actually lead to
significant rates for transitions with ∆J > 1, and particularly ∆J = 2 [14]. On the other hand,
the collisional propensity rules were generally found to be consistent with the CB theory. As a
result, dipole-allowed transitions are always preferred for highly polar ions like HCO+ and the
K quantum number is essentially conserved for symmetric-top molecules like H+

3 [15].
These R-matrix studies were, however, hampered by the use of the ANR approximation which

is expected to become invalid close to a rotational threshold [16]. Thus, the previous R-matrix
calculations applied the “kinematic correction” factor k′/k, where k (k′) is the initial (final)
momentum of the electron, designed for neutral targets (see [17] and references therein). Very
recently, we have shown in the case of H+

3 that this correction is in fact incorrect for molecular
ions [18]. Thus, by comparison with rovibrational quantum defect theory (QDT) calculations
based on the treatment described in [19], pure ANR excitation cross sections have been shown to
be accurate for kinetic energies above the resonance regime caused by rotational closed-channels.
These resonances were found to occur for transitions with ∆J = 1 and ∆K = 0 and for these,
an analytical formula for averaging transition probabilities over the resonance structure was
formulated. In the case of transitions with ∆J > 1, the ANR theory was shown to be accurate
down to threshold, provided a simple “Heaviside correction” is applied to the excitation cross
sections. Full details can be found in [18]. The corrected H+

3 rotational cross sections were
thus shown to be large and finite at threshold, in accord with the Wigner law for an attractive
Coulomb field, with a significant but moderate contribution from closed channels. The range
of validity of the adiabatic theory is therefore much wider than the usual classically derived
condition that the impacting electron energy be large compared to the threshold energy.

These results contrast with the case of neutral non-polar targets such as H2 for which
rotational cross sections fall steeply near threshold (e.g. [17]). This fondamental difference
between ions and neutrals, which was actually predicted sometime ago (although the role of
closed-channels was not considered) [20], reflects the influence of the strong Coulomb field which
ensures that the time scale for electron motion is always rapid compared to the nuclear motion.
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At the same time, the Coulomb potential provides the energy to access closed channels, thus
creating substantial resonance effects. As such, H+

3 is actually quite an unfavorable system for
the ANR theory owing to its large rotational spacings that make threshold and closed-channel
effects important up to large kinetic energies (> 10 meV). In the case of HCO+, however,
resonances due to the transitions ∆J > 1 are not expected to contribute significantly to the
dipolar rate coefficients owing to the large HCO+ dipole (3.9 D) and its small rotational spacings.
As a result, the Heaviside correction has been applied to the ANR excitation cross sections of
HCO+ but closed-channel effects were ignored. These latter will be investigated in detail in a
future work.

Finally, it should be noted that the rotational rate coefficients presented below are different
from those previously published [14, 21] since the threshold behaviour of the cross sections has
been reconsidered and corrected. The differences are however generally modest except at low
temperatures (T < 300 K). These new rates will be published elsewhere soon.

3. Results
Examples of rotational (de)excitation rate coefficients for H+

3 are presented in Fig. 1 along with
the experimental DR rate [22]. The rotational temperature of H+

3 in the CRYRING experiment
was estimated to be ∼ 20−60 K, indicating that the only levels with significant population
are the para (1, 1) and ortho (1, 0) levels. It can be noticed in Fig. 1 that the rotational
excitation rates peak at relatively high temperatures, well above 100 K, as a consequence of
the large rotational excitation energies of H+

3 (e.g. 250 K for (1, 1)→ (2, 1)). Thus, rotational
excitation rates are orders of magnitude lower than the DR rates below 100 K. On the other
hand, rotational deexcitation and DR rates have comparable magnitude down to 10 K. This
suggests that rotational cooling by electrons is an important mechanism in low temperature
DR experiments while rotational heating is expected to occur only at larger temperature. Such
effects have indeed been observed in recent long-time storage-ring experiments at the TSR facility
in Heidelberg [5, 23]. A proper model of these measurements, i.e. the time dependence of the
DR rate as a function of cooling time, clearly requires the inclusion of accurate state-to-state
rotational rates.

Fig. 1 shows also the rotational (de)excitation rate coefficients for the same transitions, (1,
1) ↔ (2,1) calculated using the scattering matrix obtained in the QDT approach. Details of
the approach can be found elsewhere (see for example, Refs. [18, 19]). In this treatment, only
p-wave states of the incident electron are accounted for. The s-wave does not contribute into
the final rate of rotational (de)excitation, because J is conserved for the s-wave scattering.
Waves with l > 1 do not contribute significantly because H+

3 is a relatively compact ion:
the scattering phase shifts in l > 1 waves are much smaller than in the p-wave. These
considerations are in agreement with the results obtained with ANR method: since p-wave
H+

3 + e− collisions have the largest scattering amplitude, the rate coefficients of rotational
(de)excitation are the largest for ∆J = 1, 2. Examples of rotational transitions with high rate
coefficients are (1,1) ↔ (2,1) ↔ (3,1); (1,1) ↔ (3,1); (1,0) ↔ (3,0). The energy-dependent
cross-sections for this type of transitions have many Rydberg resonances, which belong to
excited rovibrational states of the ion (see for example, Fig. 2 of Ref. [18]). The Rydberg
states associated with the rotational state, which is closed for ionization, can play a significant
role in rotational (de)excitation. Thermal rates do not have any resonant structure because
the Rydberg resonances are smeared out by the Maxwell-Boltzmann distribution. However,
the presence of the resonances in the rotational (de)excitation spectrum increases the average
thermal rate (see Fig. 3 of Ref. [18]). The difference between the two theoretical results (ANR
and QDT) in Fig. 1 is mainly due to these Rydberg states, which are accurately included in
the QDT approach but only approximatively in ANR (through an analytical averaging [18]).
Nevertheless, the agreement between the two approaches is good.
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Figure 1. Rate coefficients as a function of temperature for electron−H+
3 collisions. The solid

and dashed lines denote typical rotational transitions for para-H+
3 , calculated using two different

methods: ANR and QDT. The dash-dotted line gives the power law fit of the experimental DR
rate, obtained from CRYRING ion storage-ring measurements [22].

Examples of rotational (de)excitation rate coefficients for HCO+ are presented in Fig. 2 along
with the experimental DR rate [24]. It is striking to note that the DR rate is comparable to
that of H+

3 (i.e. about 10−7 cm3s−1 at 100 K) while the rotational rates are much larger, by
typically two orders of magnitude. This reflects the large electron-dipole interaction which, for
dipoles larger than about 2 D, completely dominate the dipolar transitions [14]. Furthermore,
owing to the small HCO+ rotational spacings (e.g. 4 K for 0 → 1), excitation rates for the
low lying transitions do not decrease at the lowest temperatures investigated here (e.g. the
0 → 1 rate coefficient is still above 10−5 cm3s−1 at 10 K). This suggests that both a significant
rotational cooling and rotational heating by electron collisions is expected in low temperature
DR measurements in HCO+. It is, however, not clear yet whether these rotational effects will
significantly affect the dissociation dynamics.

4. Conclusions
The competitive role of electron-impact rotational (de)excitation and dissociative recombination
at low energy has been discussed and illustrated in the case of two astrophysically relevant ions:
H+

3 and HCO+. Electron collisions have been shown to provide a possible source of rotational
(de)excitation in DR measurements, in particular for polar and heavy ions like HCO+. In low
density astrophysical media, these collisions can also contribute to the thermalization of the
ions. In this context, it should be noted that the TSR storage-ring experiments have shown
that H+

3 gets trapped in long-lived rotational states [25], an effect that is beginning to be
observed astrophysically [26]. Under these circumstances electron collisions could be particularly
important for determining actual (nonthermal) rotational distributions [27]. We finally note the
recent suggestion to use rotational emission of HCO+ caused by electron-impact to probe electron
densities in interstellar C-type shocks [28].
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Figure 2. Rate coefficients as a function of temperature for electron−HCO+ collisions. The
solid and dashed lines denote typical rotational transitions calculated using the ANR theory. The
dash-dotted line gives the experimental DR rate obtained from the experimental cross sections
of Le Padellec et al. (1997) [24].
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Nature 422 500

[10] Le Petit F and Roueff E 2006 Roy. Soc. Lond. Phil. Trans. Series A 364 3043
[11] Indriolo N, Geballe T R, Oka T and McCall B J 2007 Astrophys. J. 671 1736–1747 (Preprint 0709.1114)
[12] Chu S I and Dalgarno A 1974 Phys. Rev. A 10 788
[13] Chu S I 1975 Phys. Rev. A 12 396
[14] Faure A and Tennyson J 2001 Mon. Not. Roy. Astron. Soc. 325 443
[15] Faure A and Tennyson J 2002 J. Phys. B: At. Mol. Opt. Phys. 35 3945
[16] Lane N F 1980 Reviews of Modern Physics 52 29
[17] Morrison M A 1988 AdV. At. Mol. Phys. 24 51
[18] Faure A, Kokoouline V, Greene C H and Tennyson J 2006 J. Phys. B: At. Mol. Opt. Phys. 39 4261
[19] Kokoouline V and Greene C H 2003 Phys. Rev. A 68 012703

Seventh International Conference on Dissociative Recombination (DR2007) IOP Publishing
Journal of Physics: Conference Series 192 (2009) 012016 doi:10.1088/1742-6596/192/1/012016

5



[20] Chang E S and Temkin A 1970 J. Phys. Soc. Jap. 29 172
[21] Faure A and Tennyson J 2003 Mon. Not. Roy. Astron. Soc. 340 468–472
[22] McCall B J, Huneycutt A J, Saykally R J, Djuric N, Dunn G H, Semaniak J, Novotny O, Al-Khalili A,

Ehlerding A, Hellberg F, Kalhori S, Neau A, Thomas R D, Paal A, Österdahl F and Larsson M 2004 Phys.
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