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Abstract. In the present study the structure of copper catalysts on alumina support were 
investigated in situ and time resolved during reduction and re-oxidation at different 
temperatures with the quick-scanning EXAFS (QEXAFS) technique. Different impregnation 
times (2 min and 90 min) were chosen for the preparation which resulted in different copper 
species that show a strong variation in the reduction/re-oxidation behaviour. These dynamic 
changes as well as possible intermediate phases during the gas atmospheres changes were 
followed with up to 20 EXAFS spectra per second at the copper K-edge covering an energy 
range of 450 eV. The high time resolution provided new insights into the dynamics of the 
catalysts e.g. revealing Cu(I) as intermediate state during re-oxidation. Latest advances in the 
data acquisition hardware are leading to an improved data quality of spectra collected at the 
SuperXAS beamline. Thus, not only accurate analysis of the catalysts via XANES but also by 
EXAFS was possible. This is also due to the recent upgrade to monitor the Bragg angle directly 
with an encoder during the experiments. 

1.  Introduction 
Quick-scanning EXAFS (QEXAFS) is an invaluable tool to investigate rapid structural 
transformations of systems of scientific and industrial interest such as heterogeneously catalysed 
reactions. In analogy to other EXAFS-techniques one of the most striking advantages is the sensitivity 
to the short range order of materials which allows studying not only periodic crystal structures but also 
amorphous, liquid and gaseous materials in a fraction of a second. Considering nano-sized particles it 
is even possible to measure surface structures in absorption mode under conditions where other 
surface sensitive methods cannot be applied since they require a vacuum and/or a flat surface. Thus 
the application of QEXAFS in catalysis is most interesting due to the possibility of studying the 
dynamic changes of a catalyst in situ under realistic conditions [1–5]. Since the setup of a QEXAFS 
experiment is equal to conventional EXAFS setups and thus nowadays rather simple, it provides an 
easy access to such experiments and has recently attracted more and more attention. The time 
resolution of a QEXAFS system depends on the monochromator mechanics due to the requirement of 

14th International Conference on X-Ray Absorption Fine Structure (XAFS14) IOP Publishing
Journal of Physics: Conference Series 190 (2009) 012153 doi:10.1088/1742-6596/190/1/012153

c© 2009 IOP Publishing Ltd 1

mailto:j.stoetzel@uni-wuppertal.de
mailto:jdg@kt.dtu.dk


 
 
 
 
 
 

a quick oscillating crystal. Different setups in the past have shown that a high time resolution is 
achievable with QEXAFS using piezo tilt tables [6] and more recently cam-driven mechanics [7]. 
However, so far most reports about the limits of new QEXAFS instrumentation concentrated on 
reference samples e.g. metal foils, which provide high cross sections and low parasitical absorption. 
With the piezo-QEXAFS technique spectra were taken on catalysts with a time resolution of 17 
ms/spectrum [3], but only the XANES region was monitored. More recently, full EXAFS data were 
taken with a cam-driven mechanical system with 1 Hz [8] and 2 Hz [4]. Here we demonstrate that for 
the acquisition of full EXAFS scans the time resolution can be significantly enhanced. For this 
purpose industrially relevant Cu/Al2O3 catalysts were investigated. With one full EXAFS spectrum 
every 50 ms the capabilities of current QEXAFS setups at bending magnet beamlines (located at third 
generation light sources) will be demonstrated. With energy-dispersive EXAFS (DEXAFS) an even 
higher time resolution down to microseconds can be achieved. However, due to the more complex 
setup the application of DEXAFS is limited by the homogeneity of the sample and the data quality by 
uncompensated instabilities [9,10] which do not exist in QEXAFS, where the incident beam intensity 
can be measured simultaneously to the transmitted beam intensity. Thus, down to about 10 ms 
(dependent on the energy range) QEXAFS gives a more convenient access to time-resolved 
measurements in catalysis.   

Copper catalysts are widely used in catalysis, e.g. methanol synthesis, steam reforming and for gas 
phase oxychlorination. QEXAFS studies on Cu/ZnO systems have been reported in detail previously 
and indicate that Cu(I) species are very short-living intermediates in many reactions [2,3]. In other 
cases Cu(I) is much more stable, especially if spinels can be formed [11,12]. Interestingly the 
reduction behaviour of copper catalysts prepared with different impregnation times varies 
tremendously [13]. Thus, the dynamic behaviour of copper on alumina prepared with different 
impregnation times was studied here and compared to the results on Cu/ZnO in literature [2,3]. For 
this purpose, the Cu/Al2O3 catalysts were reduced at 350°C and the gas atmosphere was periodically 
switched between oxidizing and reducing conditions using 21%O2/He and 5%H2/He, respectively. The 
periodic change of gas atmosphere provided the possibility to average over several cycles 
corresponding to modulation excitation spectroscopy (MES), a useful technique in time-resolved 
spectroscopy to improve signal-to-noise ratios without loosing resolution in time or energy [14]. 

2.  Experimental 
The QEXAFS data were acquired at the SuperXAS beamline at the Swiss Light Source (SLS, 
Villigen, Switzerland), where a cam-driven QEXAFS monochromator is permanently installed [15], 
the storage ring is operated in top-up mode and the current amounted to about 400 mA during the 
experiments. The superbend magnet with a magnetic field of 2.9 T and a critical energy of 11.9 keV 
was used as polychromatic source. The X-ray beam is vertically collimated on the water-cooled 
Si(111) channel-cut crystal while a second toroidal mirror behind the monochromator focused the 
beam on the sample. This resulted in a beam spot of about 100 µm x 100 µm with a flux of about 1012 
photons/s. With an excenter disk of 0.30° an energy range between about 8960 eV and 9440 eV was 
covered providing the possibility to study the EXAFS region at the Cu K-edge. The Bragg angle was 
acquired simultaneously to the signal of the three air-filled ionisation chambers using a recently 
installed angular encoder [16]. A copper metal foil placed between the second and third chamber was 
used for accurate energy calibration. 

The catalysts were prepared by different impregnation times with CuCl2 solution of alumina pellets 
with cylindrical shape (3.2 x 3.6 mm, Engelhard, cf. ref. [13]). Whereas the sample impregnated for 
120 seconds had a sharp impregnation profile (later called “shell-impregnated catalyst”) and is not 
fully impregnated, the second sample with an impregnation time of 90 min was fully impregnated 
(denoted as “fully impregnated catalyst”). The samples were dried and crushed into ca. 100 µm large 
particles. The reduction/re-oxidation was conducted in a quartz glass capillary (Markröhrchen, 
Hilgenberg GmbH, 1.0 mm in diameter) functioning as microreactor [17]. The capillary was heated 
from below by a mass flow controlled air jet (Brooks mass flow controller) with a home-built oven. 
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The sample temperature was measured just below the microreactor. The reduction was performed in 
5%H2/He, the re-oxidation in 21%O2/He and the evolving products during the reduction and re-
oxidation were monitored by a quadrupole mass spectrometer (Balzers Thermostar). 

3.  Results and discussion 
First, the fully impregnated Cu/Al2O3 system (impregnated for 90 min) was investigated and heated in 
5%H2/He to 350°C. Thereby the catalyst was reduced and the dynamic oxidation and reduction 
behaviour was studied by switching the sample gas atmosphere between O2 and H2 with a period of 
120 seconds. The evolving or disappearing Cu(0), Cu(I) and Cu(II) species were recorded by 
QEXAFS using a crystal oscillation frequency of 10 Hz. This resulted in one spectrum each 50 
milliseconds. Data of three full gas atmosphere change cycles were obtained leading to more than 

7200 spectra only for this first measurement.  

 

Figure 1: Reduction of fully impregnated Cu/Al2O3 at 350°C in 5%H2/He occurring in two steps. The 
XANES region is shown enlarged as inset. 

 Figure 1 shows some normalized spectra during the first reduction process. The reduction proceeds 
much slower than the re-oxidation. For the reduction process it is thus possible to average over 5 
spectra to cancel out some of the statistical noise and still remaining below one second in time 
resolution. The reduction process can be separated into two parts as can be easily observed in the edge 
structure. According to a shift of 3.5 eV in edge position and the increased pre-edge feature for the 
intermediate state [12], the two steps can be assigned to a reduction of Cu(II) to Cu(I) and from Cu(I) 
to Cu(0). The first and second transitions are shown in figures 1a and 1b – both with an enlargement of 
the near edge structure as inset. The first striking observation is the outstanding data quality of these 
spectra combined with the high resolution in energy and time. Even small changes can be analyzed 
very accurately and with the chosen energy range EXAFS analysis is possible. Due to high sampling 
rates combined with well shielded data acquisition hardware even in the enlarged edge the structures 
are very smooth and reproducible. Regarding the time scales, the first transition from Cu(II) to Cu(I) 
takes only five seconds and the changes in whiteline intensity and edge position, marked by the arrows 
in figure 1a, are easy to detect and to quantify as has exemplarily been done for the edge positions of 
the first and the last spectra. The edge positions were determined from the maximum of the 
consistently smoothed first derivatives and the resulting values are also displayed in the graphs. 
Compared to the first transition the second transition proceeds much slower as can be seen in figure 1b 
where spectra of an overall time interval Δt = 47 s are shown (only selected spectra, not equidistant in 
time). This reduction in two steps is much more pronounced than on Cu/ZnO catalysts [2,3] and 
cannot be traced back to mass transfer limitations [17] but rather the stabilization of copper in the 
alumina matrix. 
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Figure 2: Re-oxidation of fully impregnated Cu/A2O3 at 350°C in 21%O2/He separated in two 
transition steps with the XANES region enlarged as inset. 

 In figure 2 the spectra of the re-oxidation are shown similary as in figure 1. However, no averaging 
was performed here so that each of the depicted spectra was acquired in only 50 milliseconds. Only 
one direction of the crystal oscillation was investigated resulting in 10 spectra each second 
contributing to these diagrams. Two important results can be directly extracted. Firstly, there is also an 
intermediate during re-oxidation which was not observed on Cu/ZnO catalysts. Secondly, the 
formation of the intermediate (cf. figure 2a) only takes 0.4 seconds and a further transformation mostly 
occurs in the next 0.6 seconds (cf. figure 2b). Hence, the high time resolution is really required in this 
case. Despite the higher noise level, it is still possible to follow changes in the edge structure and even 
in the EXAFS region. Note that data of three full gas atmosphere change cycles were collected, which 
will allow significant improvements in the data quality, as we have shown in a recent study during the 
catalytic partial oxidation of methane (J. Stötzel et al., in these conference proceedings). This requires 
that the reduction and re-oxidation of the catalyst is reproducible during several cycles.  

More quantitative results about the dynamic behaviour of the three copper species were achieved 
using linear combination fit analysis (LCA). While for this experiment it is easy to isolate the fully 
oxidized state as the first reference, the two other ones have to be chosen in a proper manner. It is not 
known whether there is a situation where all the copper is in the Cu(I) state during the performed 
experiments. Since in the present study nano-sized copper particles are present, bulk Cu2O and CuO 
cannot be used (different geometry, particle size dependence in the XANES). Hence, the intermediate 
species detected during the reduction in figure 1 was used as Cu(I) reference for all further LCA 
investigations presented. Since 350°C was the highest temperature and the amount of the intermediate 
is lower at lower temperatures, as will be shown later, this choice appears reasonable. Accordingly, the 
reference of the fully reduced Cu(0) was chosen from the data at 350°C after a long reduction 
procedure. Figure 3a displays the used references and figure 3b the Fourier transformations of the k3-
weighted separated EXAFS. It can be seen in 3b that the reference of Cu(0) still shows a first shell 
oxygen backscattering peak. This as well as the edge position of 8979.1 eV ahead of re-oxidation (cf. 
figure 2a) evidence that some of the copper is still oxidized. Thus, for further results it has to be kept 
in mind that the fractions of Cu(I) and Cu(0) are related to the fractions of Cu(I) and Cu(0) obtained at 
350°C. In figure 4 the results of LCA for all three reductions (a) and re-oxidations (b) measured at 
350°C are shown. The curves were shifted in time to make them comparable. For the reductions as 
well as for the re-oxidations every cycle leads to the same result. Hence, the system is reproducible 
during several cycles. However, averaging over several cycles is not straightforward as can be seen by 
the maximum of Cu(I) during the re-oxidation. For the second run a peak of one spectrum was 
detected while for the two other runs this peak is located between two other spectra. Averaging would 
lead to a loss of information in this case caused by the fast dynamics or the distance between two data 
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points. Concerning the dynamics, the amount of Cu(I) during re-oxidation (cf. figure 4b) reaches only 
about 80% of the value reached during reduction. After half a second this amount is rapidly reduced to 
about 30% and further reduction proceeds much slower. 

 

Figure 3: (a) XANES spectra and (b) Fourier transformations of copper references in different 
oxidation states used for further investigations with LCA 

 

Figure 4: LCA of all three (a) extinctions and (b) ignitions of Cu/Al2O3 at 350°C. 

  In a next step the reduction and re-oxidation processes at lower temperatures were investigated. 
Again LCA was applied with the references shown in figure 3a. The results for 322°C and 293°C are 
shown in figure 5. At lower temperatures it becomes more difficult to fully reduce the catalyst as can 
be observed by the consistent amount of Cu(I) ahead of the re-oxidation. In addition, the transitions 
proceed much slower at lower temperatures. Note that the maximum amount of Cu(I) decreases at 
lower temperatures during reduction but is more or less the same during the re-oxidations. 

The same experiments were performed with the shell-impregnated catalyst (impregnation time of 2 
min). In figure 6 spectra of reduction and re-oxidation at 341°C are shown. Although the amount of 
copper is much lower it is still possible to properly analyze the spectra. There are several striking 
differences to the fully impregnated samples. Only one transition can be observed which corresponds 
to Cu(II) to Cu(I) for reduction and Cu(I) to Cu(II) for re-oxidation. No reduction to Cu(0) occurs due 
to the lower amount of copper and probably due to its stabilization in the alumina matrix. The height 
of the peak in the edge is an indicator for the amount and geometry of Cu(I) and evolves to a higher 
value than for the fully impregnated copper catalysts. This shows that either another Cu(I) species is 
formed or the Cu(I) species formed during the reduction of the fully impregnated catalyst at 350°C is 
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already accompanied by metallic copper species. Therefore, a more detailed analysis of the spectra is 
currently carried out to find the best fitting references leading to optimized results using LCA analysis. 

Figure 5: LCA results of Cu/Al2O3 during (a) extinction and (b) ignition at 322°C and 293°C 

 

Figure 6: Spectra of Cu/Al2O3 prepared with an impregnation time of two minutes during (a) extinction 
and (b) ignition at 341°C. The enlarged XANES region is shown as inset. 

4.  Conclusions 
The present study shows that the dynamics of the reduction of copper on alumina is significantly 
different to Cu/ZnO and depends on the copper loading. Interestingly, not only during reduction but 
also during the faster re-oxidation Cu(I) was detected as an intermediate. In addition, the study 
demonstrates that not only XANES but also full EXAFS data can be obtained with the new QEXAFS 
setup at the SLS where it is installed on a bending magnet beamline. Here a full EXAFS spectrum was 
recorded with a time resolution of 50 ms providing new insights in the fast dynamics of the 
investigated processes. The measurements at different temperatures revealed a decreasing amount of 
Cu(0) and different kinetics at lower temperatures. The maximum amount of Cu(I) decreased during 
reduction at lower temperatures while it was constant during re-oxidation evidencing different 
dynamic processes. A shorter impregnation time led to significantly different dynamics since no 
transition to Cu(0) could be observed while the spectra evidenced a higher amount of Cu(I) than for 
longer impregnation times at comparable temperatures. This confirms that two different species with 
different reduction behaviour are present on fully impregnated Cu/Al2O3 that might lead to a better 
understanding of the catalytic reactions over these Cu/Al2O3 catalysts. 
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