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Abstract. The emergence and continuing use of multi-core architectures and graphics processing units require
changes in the existing software and sometimes even a redesign of the established algorithms in order to
take advantage of now prevailing parallelism. Parallel Linear Algebra for Scalable Multi-core Architectures
(PLASMA) and Matrix Algebra on GPU and Multics Architectures (MAGMA ) are two projects that aims to
achieve high performance and portability across a wide range of multi-core architectures and hybrid systems
respectively. We present in this document a comparative study of PLASMA’s performance against established
linear algebra packages and some preliminary results of MAGMA on hybrid multi-core and GPU systems.

1 Introduction

Recent activities of major chip manufacturers, such as Intel, AMD, IBM and NVIDIA, make it more evident
than ever that future designs of microprocessors and large HPC systems will be heterogeneous in nature,
relying on the integration of two major types of components. On the first hand, multi/many-cores CPU
technology have been recently developed and the number of cores will continue to escalate because of
the desire to pack more and more components on a chip while avoiding the power wall, instruction level
parallelism wall, and the memory wall [1]. And on the other hand special purpose hardware and accelerators,
especially Graphics Processing Units (GPUs) are in commodity production, and have outpaced standard
CPUs in floating point performance in recent years, and have become as easy, if not easier to program than
multi-core CPUs.

To address the critical and highly disruptive situation that is facing the linear algebra and high performance
computing (HPC) community due to the introduction of multi-core architectures and GPUs, we have
developed two projects called Parallel Linear Algebra Software for Multi-core Architectures (PLASMA) [2,
3] and Matrix Algebra on GPU and Multi-core Architectures (MAGMA). PLASMA is a redesign
of LAPACK [4] and ScaLAPACK [5] for shared memory computers based on multi-core processor
architectures. To achieve high performance on this type of architecture, PLASMA relies on tile algorithms,
which provide fine granularity parallelism. The MAGMA project aims to develop a dense linear algebra
library similar to LAPACK but for heterogeneous/hybrid architectures, starting with current “Multi-
core+GPU” systems.

The document is organized as follows. Section 2 gives an overview on PLASMA and its performance

1 Research reported here was partially supported by the National Science Foundation and Microsoft Research.
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against established linear algebra packages such as LAPACK, ScaLAPACK as well as equivalent
commercial software offerings (Intel MKL, IBM ESSL and IBM PESSL) on two different architectures.
Section 3 presents MAGMA and some preliminary results of the project on hybrid multi-core and GPV
systems.

2 PLASMA

To achieve high performance on multi-core architectures, PLASMA relies on tile algorithms, which provide
fine granularity parallelism. The standard linear algebra algorithms can then be represented as Directed
Acyclic Graphs (DAG) [6] where nodes represent tasks and edges represent dependencies among them. Our
programming model enforces asynchronous, out of order scheduling of operations. This concept is used as
the basis for a scalable yet highly efficient software framework for computational linear algebra applications.

In LAPACK, parallelism is obtained though the use of multithreaded Basic Linear Algebra
Subprograms (BLAS) [7]. In PLASMA, parallelism is no longer hidden inside the BLAS but is brought
to the fore to yield much better performance.

PLASMA performance strongly depends on tunable execution parameters trading off utilization of
different system resources. The outer block size (NB) trades off parallelization granularity and scheduling
flexibility with single core utilization, while the inner block size (IB) trades off memory load with extra
flops.

We present in this paper a study of the three one sided factorization present in LAPACK: Cholesky,
QR, and LV. Each of the one-sided tile factorizations presents increasingly complex challenges to parallel
programming. Cholesky is the easiest. The tile algorithm is represented by a DAG with relatively little work
required on the critical path. LV and QR factorizations have exactly the same dependency pattern between
the nodes of the DAG. These two factorizations exhibit much more severe scheduling constraints than the
Cholesky factorization. Moreover the stability of the tile LV factorization is not yet well understood.

PLASMA is currently scheduled statically with a trade off between load balancing and data reuse.

2.1 Comparison to other libraries

We perform a comparative study of PLASMA against established linear algebra packages (LAPACK and
ScaLAPACK) as well as equivalent commercial software offerings (Intel MKL, IBM ESSL and IBM
PESSL) for Cholesky, LV and QR factorization. We also compare with a new approach at parallel execution
called TBLAS [8] (Task Based Linear Algebra Subroutines) in the Cholesky and QR cases - the TBLAS LV
factorization has not yet been implemented. The experiments were conducted on two different multi-core
architectures based on Intel Xeon EMT64 and IBM Power6,

PLASMA, TBLAS, LAPACK and ScaLAPACK are all linked with the optimized vendor BLAS available
on the system provided within Intel MKL 10.1 and IBM ESSL 4.3 on the Intel64 and Power6 architectures,
respectively. The first architecture is a quad-socket quad-core machine based on an Intel Xeon EMT64
E7340 processor operating at 2.39 GHz. Its theoretical peak is equal to 9.6 Gflop/s/ per core or 153.2
Gflop/s for the whole node (16 cores). The second architecture is a SMP node composed of 16 dual-core
Power6 processors. Each dual-core Power6 processor runs at 4.7 GHz, leading to a theoretical peak of 18.8
Gflop/s per core and 601.6 Gflop/s per node (32 cores).

2.2 Methodology

Factorizations are performed in double precision. PLASMA is tuned with the pruned search method as
described in [9]. TBLAS, ScaLAPACK and PESSL have been tuned with an exhaustive search (because
their search space is smaller). LAPACK, MKL and ESSL have been tuned by the vendor.

Furthermore, to capture the best possible behavior of each library, we repeat the number of executions (up
to 10 times) and we report the highest performance obtained. We do not flush the caches [10] before timing
a factorization2 . However, the TLB (Translation Lookaside Buffer) is flushed between two executions: the

2 It is kernel usage, not problem size, that dictates whether one wish to flush the cache [10]. Warm (or partially warm) cache
executions are plausible for dense linear factorizations. For instance, sparse linear solvers, which rely on dense kernels, intend to
maximize data reuse between successive calls to dense operations.
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loop over the different executions is performed in a script (rather than within the executable) and calls several
times the same executable.

ScaLAPACK, PESSL and PLASMA interfaces allow the user to provide data distributed on the cores. In
our shared-memory multi-core environment, because we do not flush the caches, these libraries have thus
the advantage to start the factorization with part of the data distributed on the caches. This is not negligible.
For instance, a 8000 x 8000 double precision matrix can be held distributed on the L3 caches of the 32 cores
of a Power6 node.

2.3 Experimental results

We present in this section results of experiments conducted on a large number of cores (16 cores on Intel64;
32 cores on Power6). Figures lea), and led) present the Cholesky (DPOTRF routine) performance of the
different libraries. PLASMA consistently outperforms the other libraries, followed by TBLAS. These results
illustrate the performance improvement brought by tile algorithms. The higher efficiency of PLASMA
compared to TBLAS is essentially due to a better data reuse. Indeed, PLASMA scheduling strategy
maximizes data reuse and thus benefits from a better cache effect than TBLAS whose scheduler does not
take into account date reuse. PLASMA is even faster than the parallel DGEMM reference up to a matrix size
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Figure 1: Perfonnance comparison on a large number of cores (Gflop/s).

N = 2000 on the Intel64 machine when 16 cores are used. This is not contradictory since PLASMA does not
rely on the parallel version of DGEMM. Each PLASMA thread indeed uses the serial dgemm-seq. Better
performance can then be achieved thanks to better scheduling. For large matrix size, the parallel DGEMM
dominates all the other operations. This illustrates the fact that using a fine enough granularity (as in tile
algorithms) is more critical when processing small or moderate size matrices. This also explains the major
improvement brought by PLASMA compared to the other libraries on matrices of small and moderate size.

Figures 1(b) and 1(e) illustrate the performance of the QR factorization (DGEQRF routine) when all the
available cores are used (16 on Intel64 or 32 on Power6). PLASMA outperforms the other libraries and
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TBLAS is also very competitive. These results demonstrate the excellent scalabilityof tile algorithms. On
the Intel64 machine, TBLAS actually has a better performance than PLASMA when 16 cores are used and
when the matrix size is larger than or equal to 10,000. Indeed, when the matrices processed are large, the
critical scheduling problem corresponds to maximizing a steady state throughput. The main disadvantage
of a static schedule is that cores may be stalling in situations where work is available. This throughput is
easier to maximize with a dynamic scheduling strategy. Approaches such as TBLAS, which do implement
a dynamic scheduling, are thus likely to achieve a higher performance than approaches that implement a
static scheduling (such as PLASMA currently does). All in all, these results are motivation for a dynamic
scheduling mechanism that would assign priorities according to a trade off between data reuse and critical
path progress.

Finally, figures 1(c), and 1(f) show that the LU factorization (DGETRF routine) has a performance
behavior similar to the QR factorization and PLASMA again outperforms the other libraries. However,
the lower efficiency of dssssm-seq compared to dssrfb-seq (dssssm-seq performs more extra-flops) induces
a lower performance of the PLASMA LU factorization compared to the PLASMA QR one. On Intel64,
this leads MKL to be slightly better than PLASMA when the matrix size is larger than or equal to 10,000
(N ≥ 10,000). But, similarly to the QR case, moving towards a hybrid scheduling should remove the penalty
due to the static scheduling strategy used in PLASMA which should improve the performance on large
matrices. Furthermore, we note that an optimized implementation of the dssssm-seq kernel will improve the
performance of tile algorithms.

3 MAGMA

The MAGMA research is based on the idea that, to address the complex challenges of the emerging hybrid
environments, optimal software solutions will themselves have to hybridize, combining the strengths of
different algorithms within a single framework. Building on this idea, we aim to design linear algebra
algorithms and frameworks for hybrid manycore and GPUs systems that can enable applications to fully
exploit the power that each of the hybrid components offers.

The problems and the challenges for developers in the new computational landscape of hybrid processors
are daunting. Critical parts of the software infrastructure are already having a very difficult time keeping up
with the pace of change: In some cases, performance is not scaling up as the number of cores grows because
more and more time is spent on slow data movement rather than fast arithmetic.

Preliminary studies on a new class of “heterogeneity-aware” algorithms of “reduced communication” and
“high-parallelism” confirm that this is the case. An example of the new class of communication-optimal
algorithms is the RBT LP LU(NB) algorithm that we developed for Multi-core + GPU systems [11]. This
algorithm aims at solving a nonsymmetric linear system of equations. Figure 2 shows its performance,
comparing it with the pairwise pivoting (PwP) LU from PLASMA on current state-of-the-art multi-core
systems, and the PP LU for 1 Core + 1 GPU. This algorithm underscores another change in the design space
that is characteristic for many of the new techniques [12], namely that the new techniques often gain in
speed for the price of relaxed accuracy. Understanding this trade-off of speedvs accuracy has to be further
theoretically studied as it can lead to very efficient algorithms. For example here, experiments with random
matrices show that LP LU(NB+64) is comparable in accuracy to PP LU, and LP LU(NB) loses only from
1 to 2 digits of accuracy to gain up to 30% in speed compared to PP LU. Another example, also related to
reducing communication, is using mixed precision algorithms. Mixed precision solvers for example often
achieve significant speedups on GPUs (e.g. up to 4×on the GTX 280 [12]) compared to double precision
solvers but the speed depends on the condition number of the matrix.

4 Conclusion and perspectives

We have shown the performance improvements brought by tile algorithms on up to 32 cores – the largest
shared memory multi-core system we could access. We may expect that these results generalize somewhat
to other linear algebra algorithms and even any algorithm that can be expressed by a DAG of fine-grain
tasks.
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Figure 2: Performanceof a communication-optimal LU for a Multi-core + GPU system in both single (left) and
double (middle) precision arithmeticvs the PwP LU from PLASMA for multi-cores and the PP LU for 1 Core + 1
GPU system. The heterogeneity-aware work splitting used is shown on the right (for an 8 cores host).

We are also working on the interpolation of the optimum tuning parameters from a limited number of
parallel executions among the range of cores and matrix sizes to the full set of possibilities. This on-
going auto-tuning work should eventually be incorporated within the PLASMA software distribution. Our
experiments have also shown the limits of static scheduling for the factorization of large matrices. We are
currently working on the implementation of a dynamic scheduling for PLASMA.

Current work on MAGMA show that architecture trends have moved towards heterogeneous (GPU +
CPU) designs of increased parallelism and communication costs, and software trends have to reflect on
that. MAGMA addresses this with innovative heterogeneity-aware algorithms/techniques on extracting
parallelism and reducing communication.
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