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Abstract. We have investigated the molecular composition of the tooth enamel microregions 

in the normal and initial stages of the development of fluorosis by means of the IR and Raman 

spectroscopy. It has been shown that in the pathology of fluorosis, tooth mineralization takes 

place with the formation of calcium fluoroapaptite. It was found that an increased fluorine 

content causes a change in the characteristic profile of the bands and a redistribution of the 

intensity of the components of the υ1 РО4 and υ3 СО3 groups of the infrared and υ4 РО4 Raman 

spectra. The resulting IR and Raman spectra can be utilized as standards in the development of 

a new diagnostic approach of the early forms of the disease. 

1. Introduction 

The pathology of fluorosis of human teeth is known to be caused by excess fluoride in drinking water, 

excessive use of fluoride-containing medicines, territorial specifics, occupational factors, dietary 

features, metabolic disorders [1,2]. It is noted that 11 regions of Russian Federation are characterized 

by increased fluorine content with different concentration in water. While in some areas fluorine 

content is at the level that is by two or three times greater than maximum permissible concentration 

(MPC) [3]. At the same time the rate of dental fluorosis occurrence for the permanent teeth varies 

from 10% to 90 % in a dependence of excess for MPC norms for fluorine in water [3]. In terms of 

processes mineralization the increased fluorine content in the oral cavity causes it to be included in the 

inorganic part of the enamel, i.e., defective carbonate-substituted hydroxyapatite (CHAP). In the case 

of excess fluorine in the enamel, the formation of calcium fluorapatite (FAP) takes place whose 

physicochemical properties cause change in the mineralization of tooth enamel [4]. With a constant 

excess of fluorine concentration in the subsurface layers of enamel, calcium fluoride CaF2 is formed 

[5], which can be fixed at the late stage of fluorosis in the form of cracks, chips, and a change in the 

color of enamel [6]. This requires the development of a diagnostic technique for the state of enamel 

which is sensitive to initial changes in fluorosis. 

Hence the optical methods of molecular identification of a substance are most promising and 

sensitive for recording changes generated by the development of fluorosis in the micro-areas of tooth 
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enamel. As a non-destructive analysis method, the Raman spectroscopy allows one to obtain precision 

data on the molecular composition of biological objects [5,7,8]. Hard tooth tissue of a human tooth can 

also be studied by means of the IR spectroscopy [8,9]. In addition, the inclusion of an IR microscope 

into the optical circuit using synchrotron radiation allows local changes in the mineral-organic matrix 

of tooth enamel from areas less than 100µ
2
 to be investigated [10]. 

Note that in the literature there are no data on the initial changes in both the molecular composition 

of the teeth in the case of fluorosis and the one-to-one correspondence between the methods of optical 

spectroscopy in the pathology in question. Therefore, the aim of this study is to investigate the features 

of mineralization of enamel apatite in the initial stages of the development of pathology caused by an 

increased fluorine content in the oral cavity by means of the Raman and IR spectroscopy methods. 

 

2. Materials and methods 

2.1. Teeth preparation 

We have investigated tooth samples with intact enamel and enamel with fluorosis. The study was 

performed on tooth samples removed from the patients aged 20-40 according to the orthodontic 

criteria. The studied samples of teeth were extracted for orthodontic reasons off the patients living in 

the South Federal district where increased fluorine content is observed in drinking water. 5 samples of 

teeth suspected for dental fluorosis were examined. Besides, 5 samples of the intact teeth were 

examined. The degree of fluorosis on the Thylstrup-Fejerskov scale (TFI) was 1-3 and corresponded 

to the early stage of fluorosis. In accordance with the requirements of the microspectroscopic research 

techniques for the geometry of the samples, we prepared plane-parallel segments of teeth similar to 

[7,11]. No less than 10 selected points were used for each of the samples within the surface and near-

surface region for obtaining of the spectra. The spectra for each point were averaged over 10 

measurements. 

2.2. Raman microspectroscopy  

The Raman spectra were obtained on an Xplora Plus confocal Raman microscope (HORIBA, Japan) 

with a spectral resolution of 1.5 cm
-1 

in the range 200–2000 cm
-1

. The excitation was carried out by 

means of a laser with a wavelength of 785 nm. Precision studies of tooth microregions were carried 

out with a step of 100 mkm from the surface to the deep layers of enamel. 

2.3. IR microspectroscopy with the use of synchrotron radiation 

This part of study was conducted at the Infrared Microspectroscopy (IRM) beamline (Australian 

synchrotron, Victoria, Australia), using a Vertex 80v spectrometer coupled with a Hyperion 3000 

FTIR microscope (Bruker Optik GmbH, Ettlingen, Germany)  and a liquid nitrogen-cooled narrow-

band mercury cadmium telluride (MCT) detector (Bruker Optik GmbH, Ettlingen, Germany). The 

synchrotron FTIR measurement of the tooth slices was performed in a reflectance mode using CsI 

window as an IR background reference. All the synchrotron FTIR spectra were recorded within a 

spectral range of 3800‒700 cm
-1

 using 4-cm
-1

 spectral resolution. 

 

3. Results 

3.1. Raman microspectroscopy  

The Raman spectra obtained from micro-sites of intact and fluorous teeth samples are shown in figures 

1a and 2a in the range of 250–600 cm
−1

 which were collected at several enamel points in the direction 

from the enamel surface to the dentin (figures 1b, 2b) with a step of 100µ. 

Based on the analysis of the spectral data, it was found that the most intense lines in the spectra 

belong to the PO4
3−

 HAP modes where the ν1 vibrations are localized around 962.6 cm
−1

, ν3 in the 

ranges 1006.2, 1030, 1047.4 cm 
–1

 and ν2 428.4 cm 
−1

, 448.2 cm 
−1

, and ν4 about 579.6 cm 
−1

, 591.6 

cm
−1

. As the experimental data suggests (figure 1a), a change in the shape of the mode is characteristic 

of the PO4
3−

ν4 vibration, since there is a redistribution of the intensity of its components. The change 

in the intensities of the components of the PO4
3−

ν4 vibration is noticeable while comparing the spectra 
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obtained from different layers of intact enamel. In addition, a different form of the PO4
3− 

ν4 vibration is 

observed while comparing the spectra obtained from similar intact enamel and enamel with fluorosis 

microregions (figures 1a, 2a). 

 

 

 

 

Figure 1. The Raman spectra of enamel of 

intact tooth.  

 Figure 2. The Raman spectra of tooth enamel 

with fluorosis s. 

 

Note that in all the Raman spectra (figures 1a, 2a) there are maxima associated with the inclusion 

of carbonation CO3
2−

 into the apatite lattice. The peak located at about 1073 cm
–1

 is the CO3
2−

 

vibration which replaced the PO4
3− 

group in the CHAP lattice (B type of substitution). A low-intensity 

vibration localized in the area of 1106 cm
– 1

 is associated with the inclusion of the carbonation CO
2−

3 

into the OH
−
 group lattice in the position of the OH

−
 group (A-type substitution). A low-intensity 

broad band is also observed in the spectra in the region of 280–311 cm
– 1

, which relates to the CaII – 

OH vibrations of the hydroxyapatite and CaII -F from the fluoroapatite (FAP) [12]. 

 

3.2. Results of the IR-microspectroscopy of the reflection  

Based on the analysis of the data in Figure 3.4, it was found that in the IR reflection spectra of all the 

samples there are vibrations associated with the enamel mineral matrix.  

 

 

 

 

Figure 3. The IR-spectra of enamel of intact 

tooth. 

 Figure 4. The IR-spectra of tooth enamel with 

fluorosis. 
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The maxima in the spectra located near 1094, 1060, 1048, 1040 cm
– 1 

are the ν3 vibrations of the 

PO4
3−

 radical and a peak at about 956.4 cm
– 1 

can be attributed to PO4
3−

 ν1. In addition, the reflection 

spectra contain bands associated with the CO3
2−

carbonation which replaces phosphate or hydroxyl 

radicals (A and B-type substitutions, respectively). The active modes in the spectra are the CO3
2−

 ν3 in 

the area of about 1540.7 (A-type), 1446.6 (AB-type), 1401.3 (B-type) cm 
− 1

 as well as the CO3
2−

 ν1 

879 ((A-type - shoulder), 870.6 (B-type) cm 
− 1

. Figures 3a and 4a show separately the areas of the 

main peak ν3 of the PO4
3−

 radical in the area of 1000-1100 cm
-1

 and the vibrational area in Figures 3b 

and 4b 1600–1300 cm
– 1

 correlated with the CO3
2−

carbonation in the A- and B-type positions. As can 

be seen in figure 3, in the case of intact teeth, the IR reflection spectra from enamel areas located at 

different depths are characterized by a redistribution of high-intensity components band ν3 of the PO4
3−

 

radical, which is in agreement with the previously obtained data [8]. Similarly, a redistribution of 

intensity is observed for the components of the carbonate anion band CO3
2−

 ν3 corresponding to the A 

and B substitution types located both in the range 1550–1350 cm 
– 1

, so and in the area of 890–

860 cm
-1

. This corresponds to different contents of the carbonate ion CO3
2−

 in the enamel apatite 

structure. The analysis of the IR spectra obtained from tooth enamel microregions with dental 

fluorosis shows that the profile of the spectral band of the PO4
3−

radical in enamel zones on its varying 

depth is almost identical (figure 4). 

 

4. Discussion 

As shown in [12], through the course of the study of severe cases of fluorosis, the inclusion of a large 

proportion of fluorine in the ОН
-
 position resulted in a shift of the Raman scattering band ν1 PO4

3−
 to 

the high frequency area. Our experimental data show that in the spectra of the samples of enamel with 

fluorosis (figure 2) there is no shift of the main band relative to samples of intact enamel, which 

indirectly confirms the fact that a low amount of fluorine is found in the apatite. Simultaneously, the 

redistribution of the intensity of the components of the PO4
3−

 ν4 mode in the area of 579.6 cm
 – 1

, 591.6 

cm
 – 1

 observed during scanning of the microregion (figure 2a) may indirectly indicate the presence of 

fluorine in the structure of the CHAP enamel in accordance with the data in [13]. However, in 

accordance with the data in [14], the redistribution can also be generated by different orientations of 

the apatite crystals in the enamel prisms. In the case of the enamel with fluorosis, such a redistribution 

is not observed within the same microregion (figure 2 a,b). This might mean that the contribution of 

fluorine inclusion into the apatite structure is key to the intensity transformation. This is also 

confirmed by an increase in the intensity of the vibrations of a wide low-intensity band of 280-311 cm
– 

1
, which relates to the СаII – OH vibrations of the hydroxyapatite and CaII-F from the fluoroapatite 

(FAP) [12], but becomes more prominent in the case of fluorosis with a maximum shift to 311 cm
 -1 

(figure 2a). Simultaneously, based on the analysis of the experimental spectral data (figures 1,2), in the 

samples of the intact and enamel with fluorosis there are A and B substitution types with the presence 

of the corresponding modes in the area of 1106 and 1073 cm
-1

, respectively. Moreover, in the case of 

the dental fluorosis the intensity of the CO
2−

3 ν1 A-type modes is several times lower both in the 

surface and in the deep layers of the enamel (figure 2), which is most likely due to the inclusion of 

fluorine atoms into the apatite structure. 

The investigation of the samples of enamel with fluorosis by means of the IR spectroscopy in the 

reflection using synchrotron radiation in various layers of enamel shows a high stability of the ratio of 

mode intensities of the PO4
3−

 ν3 1094, 1060, 1048, 1040 cm
−1

, PO4
3−

 ν1 956.4 cm
−1

, which is in 

agreement with the Raman data spectroscopy on the stability of the apatite crystal lattice in the case of 

fluorosis. Moreover, in the IR spectra, similarly to what was observed by means of the Raman 

spectroscopy, there is a redistribution of the СО3 ν3 intensity modes localized around 1540.7, 1446.6, 

1401.3 cm
 – 1 

and correlated with the A and B type of substitution. 

The use of the Raman and IR spectroscopy data on the mineralization processes of enamel apatite 

will be instrumental in distinguishing between healthy and damaged hard tissues of the tooth in the 

initial stages of fluorosis.  
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5. Conclusion 

According to the data of optical spectroscopy, in the case of the initial stages of the fluorosis disease, 

fluorine atoms are introduced into the enamel apatite structure causing the formation of the fluorine-

substituted apatite. It was shown that the microregions of the enamel with fluorosis contain defective 

hydroxyapatite where the positions of the hydroxyl groups are replaced by fluorine atoms with the 

CO
2−

3 carbonate anion being replaced from the positions of A-type defects in the apatite lattice. 

Simultaneously, the analysis of the spectral data shows that the inclusion of fluorine atoms in the 

initial stages of the disease does not exclude the carbonate anion from the position of B-type defects in 

the enamel apatite. Mineralization of enamel in the presence of a high amount of fluorine also leads to 

the stabilization of the apatite structure based on the stable ratio of the РО4/СО3intensity modes (580-

615cm
-1

 and 1045-1080cm
-1

) in different layers of the enamel. 

The above features can be employed in the development of a new method for diagnosing fluorosis. 
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