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Abstract. We present a preliminary analysis of spectral evolution of 35 long bright gamma-ray
bursts (GRBs) detected by Konus-Wind instrument. From the temporal and spectral analyses
of the sample, we investigate the evolution of parameters of the smoothly joined broken power-
law spectral model (the Band “GRB” function), in particular, we analyse hardness-intensity
correlation within a burst. We show that the bulk of bursts exhibit Ep ∝ F γ relation with the
slope γ ∼ 0.3–0.5, where Ep is the νFν spectrum peak energy and F is the energy flux; while
a number of events have the smooth initial phase with strong spectral evolution with γ & 1.
Finally, we discuss derived the Band function parameters and their evolution pattern in the
framework of GRB emission models.

1. Introduction
The observed energy spectrum of the main phase of gamma-ray bursts, the prompt emission, is
significantly non-thermal, with a typical gamma-ray burst photon spectrum described with the
Band function [1]. Such a spectrum implies that a large proportion of the energy released in the
GRB central engine is converted into non-thermal particles which subsequently emit photons,
most likely, by the synchrotron process. It is suggested that the particles are accelerated by the
Fermi mechanism in internal shocks in a relativistic outflow (jet) from the central engine (the
fireball model [2]). The synchrotron emission model predicts a photon index at low energies to
be in between -3/2 (fast cooling regime) and -2/3 (slow cooling regime) [3]. It is also believed
that a fraction of the observed radiation comes from the jet’s photosphere, when the expanding
jet becomes transparent to its own radiation (see, e.g., [4]). One of possible ways to constrain
parameters of radiation models is to study the time evolution of parameters of the Band model,
including the hardness-intensity correlation during the burst. For the first time the hardness-
intensity correlation was reported in [5]. For a large number of bursts, it was found that the
hardness-intensity correlation has a form of a power law, Ep ∝ F γ with a slope γ ∼ 0.5, where Ep

is the energy corresponding to the peak of the spectral energy distribution (SED), νFν spectrum
(see, e.g., [6] for details), and F is the energy flux. It was shown that the correlation is consistent
with the standard synchrotron radiation model (see, e.g., [7]). Thus, the study of the spectral
evolution of bright bursts may provide a crucial information on the emission mechanism.

During more than 25 years of operation Konus-Wind (KW) [8] has detected more than
3000 GRBs in the wide ∼ 20 keV–10 MeV energy band which enables the detailed study of the
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GRB spectral evolution, in particular, for bright bursts with separated smooth emission pulses.
We start with a description of the KW detectors and the GRB sample used in Section 2. In

Section 3 we describe the analysis procedures and present the results in section 4. Finally, in
Section 5 we conclude with a summary.

2. Konus-WIND
KW consists of two identical NaI(Tl) detectors S1 and S2, each with 2π field of view. The
detectors are mounted on opposite faces of the rotationally stabilized Wind spacecraft (launched
on 1994 November 1), both observing the whole sky. Each detector has an effective area of
∼ 80–160 cm2 depending on the photon energy and incident angle. The burst lightcurves are
recorded in three energy bands G1 (13–50 keV), G2 (50–200 keV), and G3 (200–760 keV), while
burst energy spectra are measured in the 13 keV–10 MeV band (nominal). For a more detailed
description of KW see [9, 10, 11].

Between 1994 and 2020 KW has detected ∼ 3250 GRBs with ∼ 17% of them being short
GRBs. For the analysis we selected 35 (∼ 15%) brightest long GRBs in the KW sample in terms
of peak count rate in the 50–760 keV band on the 64 ms timescale. We additionally required that
prominent features of the burst light curve are reasonably well covered by individual spectra
(e.g., at least few spectra were measured during the initial phase of the burst), since the length
of the KW spectrum accumulation interval vary during the triggered mode record and it also
depends on the count rate.

3. Data analysis
The temporal analysis of the sample was performed in a way similar to [11]. During the analysis
we noticed that some GRBs show the distinct, low-amplitude initial phase (IP) similar to one
of extremely intense GRB 130427A, see, e.g. [12]. To quantitatively characterize the IP shape,
we fitted, using a χ2 minimization, the initial parts of background-subtracted burst light curves,
measured with 16 ms or 64 ms resolution, by a sum of exponential pulse functions [13]

A(t) = Amλ exp{−τ1/(t− t0)− (t− t0)/τ2} (1)

for t > t0; where t0 is the pulse start time; Am is the pulse amplitude; τ1, τ2 are time constants

characterizing the rise and decay parts of the pulse; and λ = exp (2µ), µ = (τ1/τ2)
1/2. This pulse

peaks at tm = t0+(τ1τ2)
1/2 and has a width, measured between two 1/e points w = τ2(1+4µ)1/2.

The spectral analysis was performed using XSPEC version 12.9.0 [14]. The raw count
rate spectra were rebinned to have a minimum of 20 counts per channel to ensure Gaussian-
distributed count statistics and fitted using the χ2 statistic as a figure of merit to be minimized.
Each spectrum was fitted by two spectral models, the Band function:

f(E) ∝

 Eα exp
(
−E(2+α)

Ep

)
, E < (α− β)

Ep

2+α

Eβ
[
(α− β)

Ep

(2+α)

](α−β)
exp(β − α), E ≥ (α− β)

Ep

2+α ,
(2)

where α is the low-energy photon index, β is the high-energy photon index, and Ep corresponds
to the peak of νFν spectrum; and an exponentially cutoff power-law (CPL):

f(E) ∝ Eα exp

(
−E(2 + α)

Ep

)
. (3)

Both spectral model amplitudes were normalized to the energy flux (F ) in the 20 keV–10 MeV
range.

For bursts with rather smooth rise and decay phases, we fitted the time-resolved Ep-F relation
with a simple power law.
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4. Results
All spectra of the analysed bursts are well described by the Band or CPL models with P-value
of the χ2 statistics & 1%. The time resolved fits show strong variations of α, Ep, and β with
the flux. Bright bursts typically show hard α > −2/3 inconsistent with the simple synchrotron
emission model.

The results of the analysis of a typical long GRB 960924 are presented in figure 1.
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Figure 1. Lightcurve of bright smooth GRB 960924 along with the evolution of Band function
and CPL (where β is not presented) parameters (left). Vertical gray solid lines denote spectrum
accumulation intervals, horizontal dashed line corresponds to background count rate. The gray
lines in the α panel denote synchrotron lines of death of −3/2 and −2/3. The gray line in the
β panel denotes typical value of −2.5. The time resolved Ep-F relation (right). The relations
during smooth leading (red) and trailing (blue) fronts are well described by a power law with
slopes of ∼ 0.4 and ∼ 0.3, respectively.

We have found 13 GRBs with the initial phase well fitted by a single model pulse or a sum
of two pulses. The burst properties are listed in table 1, which contains the following columns.
Burst detection date, burst detection time (UT, not corrected for Wind-Earth light travel time),
T90 — the interval containing 90% of burst counts in the energy band ∼ 50–750 keV. The next
two columns contain the initial pulse spectral lags, the difference of the pulse peak times in a
softer and a harder band. The penultimate column contains the slope of Ep-F relation of the
burst initial phase, calculated for burst with good enough spectral coverage. The last column
contains a comment on the light curve fit. The uncertainties are given at 68% confidence level.
GRB 190305A with T90 ∼ 1.5 s may be attributed to long GRBs due to a long tail seen up to
∼ 15 s after trigger time.

In six cases IP shows a significant hard-to-soft evolution which is governed by both α and Ep.
For these bursts, the slope of the Ep-F relation is significantly steeper ∼ 0.8–3. Figure 2 and
figure 3 show the initial phases and the spectral evolution of GRB 950822 and GRB 131014A
with pronounced spectral evolution.
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Figure 2. Lightcurves of GRB 950822 (left) and GRB 131014A (right). The top panels show the
entire prompt emission phase. The bottom panels show the initial phase fit results in the three
energy bands. Vertical solid lines denote spectrum accumulation intervals, horizontal dashed
lines correspond to background count rate. The vertical dashed lines denote the lightcurve fit
interval.

Table 1. Bursts with smooth initial pulses

Date Time T90 τlag,G1−G2 τlag,G2−G3 Ep-F Note
(UT) (s) s s slope

19950822 03:49:10.530 18.9(-0.3,+0.3) 1.78± 0.84 0.55± 0.11 ∼ 1.5 two pulses in G1 and G2
19960114 12:15:04.737 30.8(-1.0,+1.1) 0.20± 0.17 – ∼ 0.5
19960710 00:11:02.014 27.3(-0.6,+0.8) −0.36± 0.29 0.15± 0.27 – two pulses in G2
19980516 11:23:57.217 15.4(-0.2,+0.3) 0.04± 0.13 1.06± 0.32 ∼ 0.4
19991216 16:07:18.085 14.5(-0.1,+0.2) 0.52± 0.51 −0.30± 0.49 – two pulses in G2
20001225 07:09:20.336 26.0(-1.3,+1.4) 0.05± 0.05 0.14± 0.12 ∼ 0.3
20021008 07:00:50.599 14.0(-0.1,+0.1) 0.67± 0.09 0.56± 0.15 ∼ 0.8 two pulses in G1, G2, and G3
20090408 19:46:38.539 4.3(-0.2,+0.2) 0.31± 0.04 0.13± 0.05 ∼ 3.0
20130427 07:47:09.501 11.4(-0.2,+0.2) 0.05± 0.15 0.18± 0.04 ∼ 1.5 two pulses in G1 and G2
20131014 05:09:01.405 3.0(-0.1,+0.1) 0.30± 0.16 0.27± 0.11 ∼ 2.4
20140320 20:21:38.804 23.1(-0.6,+0.8) – 0.36± 0.32 –
20190305 13:05:15.900 1.5(-0.1,+0.1) −0.07± 0.65 – ∼ 2.6 two pulses in G3
20190530 10:19:06.000 20.8(-0.8,+1.0) 0.24± 0.06 0.18± 0.17 –
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Figure 3. Lightcurves of GRB 950822 (left) and GRB 131014A (right). The top panels
show evolution of Band function and CPL parameters. The gray lines in the α panel denote
synchrotron lines of death of −3/2 and −2/3. The gray line in the β panel denotes typical value
of −2.5. The bottom panels show Ep-F relations. The relations during leading (red solid line)
and trailing (blue solid and dashed lines) fronts of the main episode are well described by a
power-law with slope of ∼ 0.4. During the initial phase the slope of the relation is significantly
steeper.

5. Summary and discussion
We analysed 35 bright long Konus-Wind gamma-ray bursts and found a dozen events with
smooth IP, a half of which show significant spectral evolution with a steep slope of Ep-F relation
during IP. The slopes of Ep-F relation for the most of the bursts without smooth IP are ∼ 0.3–0.5
which is consistent with “Amati” and “Yonetoku” relations derived for Konus-Wind GRBs [10].
The slope of ∼ 0.5 may arise due to the variation of the bulk Lorentz factor of the ejecta or
the characteristic random Lorentz factor of the emitting electrons [12, 15]. The observed hard
low-energy spectral indexes α > −2/3 may be produced by a number of mechanisms, e.g., by the
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emission of relativistic electrons in a non-uniform magnetic field or photospheric emission [16].
The observed slopes of Ep-F relation for a fraction of bursts with smooth IP are much

steeper than observed for the bulk of GRBs [7]. Such a strong spectral evolution of the IP may
be explained assuming a distribution of the Lorentz factor in the outflow, see, e.g. [17].

We plan further detailed analysis of the spectral evolution of the bursts with smooth IP using
KW three channel spectral analysis and Fermi -GBM data.
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