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Abstract. The representation of the Casimir energy in terms of Lippmann-Schwinger
operators in the TGTG formula is a convenient way to address both quantitative and qualitative
aspects of the Casimir force. Since this form of the energy is already explicitly regularized it may
be used in order to prove statements about the force. In addition, combined with approximations
of the T operators involved, it allows for convergent asymptotic expressions for the force between
bodies.
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1. Introduction
In this talk we discuss various aspects of a representation of the Casimir energy in terms of T
operators, which is adequate whenever one is interested in the interaction of two bodies.

The Casimir force [1] explores the interplay between a quantum field and external ”classical”
like objects such as boundary conditions, background dielectric bodies or space-time metric.
While the classical objects modify the behavior of the field due to their presence, the field, in
turn, acts on the objects by exerting forces. Much work has been devoted to understanding the
effect, as it appears in varied branches of physics: from condensed matter (interaction between
surfaces in fluids) to gravitation and cosmology.

The original method used by Casimir, that of mode summation, has led to a large body of
work on the effect in simple geometries, where the modes may be computed exactly.

The scattering approach to Casimir physics has proved very useful in 1D. Indeed, many of
the calculations of Casimir interaction between bodies are based on scattering theory, as the
photon spectrum in an open geometry is continuous and its description requires scattering.

Here, we explore a scattering approach to the Casimir effect in higher dimensions. The
approach is based on analysis of a determinant formula for Casimir interactions obtained in
[2, 12], and may be viewed as a generalization of previous formulas, especially related to
scattering, such as the Lifshitz formula [3], and the results of Balian and Duplantier [4]. Within
this approach, the Casimir energy is encoded in the determinant of the operator 1−TAG0TBG0

where TA, TB are Lippmann-Schwinger T operators associated with bodies A and B and G0 is
the photons Green’s function; we shall therefore refer to the formula as the TGTG formula.

In [2] it was shown how general results regarding the direction of the force between bodies
related by reflection can be obtained from the TGTG formula. For example, the sign problem
of interaction between two hemispheres was resolved. This result was subsequently extended

60 Years of the Casimir Effect IOP Publishing
Journal of Physics: Conference Series 161 (2009) 012020 doi:10.1088/1742-6596/161/1/012020

c© 2009 IOP Publishing Ltd 1



to a large class of interacting fields possessing the ”reflection positivity” property [5] (See also
[6], where use is made of reflection positivity arguments to infer attraction between vortices
and anti-vortices in a frustrated XY model). In [7] an alternative derivation of the formula was
presented.

We start with a derivation of the determinant formula by showing how to derive the T
operator of a pair of perturbations, once the T operator of each perturbation by itself is known.
We then illustrate how one obtains the appropriate formula in the vector (electromagnetic) case.
Next, we will consider the special case of a body placed next to a perfect mirror, and the dilute
limit, dealing with very weak dielectrics by expanding round ε = 1.

The mathematical validity of the present approach to calculations of Casimir forces is then
addressed. In particular we show that the formula is given in terms of log det(1 + A). Here the
sum

∑
i |λi| < ∞ is absolutely convergent, where λi are the eigenvalues of A, and so log det(1+A)

is mathematically well defined, thereby explicitly showing that the usual infinities plaguing
Casimir calculations have been completely accounted for.

A natural setting for computations using the TGTG formula is by writing it in a basis of
partial wave expansions respecting symmetries of bodies as much as possible. In 1D where only
two modes (left and right movers) exist at each ω the formula leads to a known closed form
formula for the Casimir energy in terms of reflection coefficient (see, e.g. [8, 9]).

Spherical wave expansions are convenient when considering the Casimir interaction between
spherical bodies. We demonstrate this by computing the force between two spheres at all
distances, thereby generalizing the approach of [10] to spheres beyond Dirichlet boundary
conditions, and going beyond the proximity force approximation.

2. The TGTG formula
Let us start by briefly recalling the Lippman-Schwinger operators from scattering theory. Most
of the derivation is standard and may be skipped by readers interested only in new results.
However, we point out that our approach where the T operators of combined scatterers are
utilized seems new.

The T operator was introduced by Lippmann and Schwinger in their celebrated paper on
scattering theory [11]. As an application of their formalism, they have computed the scattering
properties of a neutron by a proton bound in an inert molecule. T appears in the Lippmann-
Schwinger equation as follows: Assume that a solution φin of a free wave equation, without a
potential H0(ω)φin = 0 is known. Here H0 corresponds to a free wave equation, for example:

H0 = ∇2 + ω2

if we are dealing with a scalar field, or

H0 = ∇×∇×+ω2I

for the wave equation of the vector potential A in the radiation gauge A0 = 0.
We are interested in the modes of the system in the presence of some local perturbation.

Such a perturbation will be represented by a potential V (In the electromagnetic case, when the
magnetic response is not considered V corresponds to ω2(ε(x)− 1)), and so we are interested in
the equation (H0 + V )ψ = 0. Note that all the operators above depend on ω, which we omit
from the notation to streamline the arguments.

A solution ψ of the eigenvalue equation (H0 + V )ψ = 0 having φin as the incoming part is
now constructed. Formally, this is done by looking for a solution of:

ψ = φ−G0V ψ,

which is the Lippmann-Schwinger equation.
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It follows that

ψ = (I + G0V )−1φ = (I −G0V (I + G0V )−1)φ = (I −G0T )φ

where

T = V (I + G0V )−1, (1)

is called the transition matrix, or the Lippmann-Schwinger operator.
A typical example is choosing φ to be a plane wave solution of the scalar equation, and so

the scattered wave-function is given by

ψk = eikx −
∫

dk′G0(k)〈k|T |k′〉eik′x. (2)

To find the interaction between two bodies, we consider the T operator of two perturbations
VA, VB. We compute the joint transition matrix for both perturbations TA

S
B, and show that

the part independent of ”self energy” is exactly (11).
Writing, formally, V = G−1

0 −G−1 we have:

1−G0(V1 + V2) = 1−G0(2G−1
0 −G−1

1 −G−1
2 ) = G0G

−1
1 + G0G

−1
2 − 1 (3)

so that:

1
1−G0(V1+V2) = 1

G0G−1
1 +G0G−1

2 −1
= 1

G−1
1 +G−1

2 −G−1
0

G−1
0 = (4)

G1
1

G2+G1−G2G−1
0 G1

G2G
−1
0 ,

where we used A−1 = BB−1A−1C−1C = B(CAB)−1C.
Using the identity:

G = G0 −G0TG0 (5)

as Gi = G0 −G0TiG0 (with i = A,B), together with the definition of T (1) we find:

1
1+G0(VA+VB) = (1−G0TA) 1

1−G0TBG0TA
(1−G0TB) (6)

and so the joint T operator of a pair of perturbations may be factored as:

TA
S

B = (VA + VB) 1
1+G0(VA+VB) = (7)

(VA + VB)(1−G0TA) 1
1−G0TBG0TA

(1−G0TB)

This expression represents a re-summation of the Born series for T , given by:

T = (VA + VB)− (VA + VB)G0(VA + VB) + (VA + VB)G0V G0(VA + VB) + ... (8)

in a way which identifies the terms which are responsible for directly mixing the A and B
perturbations, namely 1−G0TBG0TA, as well as the terms which will be responsible for repeated
scattering from the same perturbation, which are responsible for self energy: (1−G0TA).
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The expression for TA
S

B can be used to find the ground state energy of the system. It is
well known that the change of the density of states in the system due to introduction of the
perturbations is given by1:

δρ(E) =
1
π

Im∂E Tr log T (E) (10)

We now may use this formula in two ways:
For the Casimir effect, we compute the energy by integrating over the density of states and

summing the allowed modes of the electromagnetic field, giving the result

EC(a) =
∫∞
0

dω
2π log det(1− TAG0TBG0). (11)

From a more general point of view, we consider the change in the energy of the ground state
of a many body system. In this case one needs to compute the many-body T operator, and try
to identify how the pole (or cut) associated with the ground state in the density of states shifts.

Dirichlet boundary conditions
In many cases, and indeed in the original presentation by Casimir, one is interested in sharp
boundary conditions, such as Dirichlet or Neumann. Sharp boundary conditions result in
singular energy density at the surface, as field modes are required to vanish for all momentum
scales. Typically, the local energy density diverges as the inverse fourth power of the distance
from the boundary [13].

It is important to point out that the above considerations also describe the conducting case
with minor changes. Following [14], assume conducting boundary conditions are given over a
surface Σ, parameterized by internal coordinate u and by the embedding in R3 given by x(u).

One may describe a simple metal by taking χ(iω) = ω2
p

4πω2 on Σ, and letting Σ have a thickness of
a few skin depths l/ωp, l ∼ O(1), here ωp is the plasma frequency (proportional to the effective
electron density in the metal). In the limit of large ωp one retains the same expression as (11),
with the following substitutions:

EC(a) = (12)
− 1

4π

∫∞
0 dω(log det(1−MBA

1
1+MA

MAB
1

1+MB
)

where in the Dirichlet case M is given by:

M (D)(u, u′; ω) = lωp

√
g(u)G0(x(u),x(u′))

√
g(u′) (13)

and acting on the surfaces Σ (See also [18]).

3. Analytical properties of the TAG0TBG0-operator:
Casimir physics is largely involved with understanding and separating cutoff dependent self
energies from universal energies. Often various regularization methods are employed in the
calculation. The aim of this section is to show that the form (11) for the energy is already

1 A related form is known as the Krein formula:

δρ(E) =
1

π
Im∂E log det S(E) (9)

where S is the scattering matrix.
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fully regularized. We do this in a rigorous fashion, showing that the object log det(1 −
TAG0ABTBG0BA) is mathematically well defined and finite.

In practical terms this means that replacing the infinite dimensional matrix of 1 −
TAG0ABTBG0BA by its upper-left n×n block with n large enough and calculating the resulting
ordinary determinant, gives an arbitrarily good approximation to a (finite) quantity which we
call det(1−TAG0ABTBG0BA). The main mathematical notions and theorems which we use here,
are briefly reviewed in section 11.

As remarked already in the introduction it is well known that det(1 − M) is well defined
whenever M is a trace class operator (definition 11.4, denoted t.c.). We would like to show that
for a large class of situations (including a pair of disjoint finite bodies A, B, separated by a finite
distance) the operator TAG0ABTBG0BA : HA → HA is trace class in the continuum limit , and
so prove that indeed the expression (11) is finite and well defined.

Indeed by theorem 11.5 the mere fact that G0(x, y) is a smooth function for x 6= y is sufficient
to guarantee that for any pair of compact volumes A,B ∈ R3 at finite mutual distance the
operator G0AB is trace class. To deduce that TAG0ABTBG0BA is trace class (and by similar
argument also 1 − G0J TA appearing in eq (26)) it is then enough (proposition 11.6) to make
sure TA,B(iω) are bounded (definition 11.2).

In the context of dielectric interaction it is particularly easy to show that T (iω) is bounded.
In physical systems at equilibrium, it follows from causality properties of the dielectric function
[15], that χ(iω, x) ≥ 0. We then have the following

Lemma 3.1. For χ(iω, x) > 0 , the T operators are positive and bounded.

Proof: Since G0, χ > 0 (definition 11.3) one may write T =
√

χ ω2

1+ω2√χG0
√

χ

√
χ from which

it is seen that T > 0 and that in the operator norm ||T || ≤ ω2||χ|| ¤.
In fact, this holds also for nonlocal χ as long as f(x) → ∫

A χ(iω, x, x′)f(x′)dx′ is a bounded
positive operator HA → HA. In the context of a more general type of interactions which may
not be positive, one needs to use some assumption on the stability of the system to guarantee
that T (iω) is bounded. We do not elaborate on this here.

An alternative approach to proving the trace class property of TAG0ABTBG0BA is based on
the notion of a Hilbert Schmidt operator (definition 11.7, also denoted H.S.). Here the frequently
used strategy in operator analysis is to use the following fact: if U ∈ H.S. and V ∈ H.S., then
UV ∈ t.c.. The advantage of this approach is that it is very easy to check if an operator is
Hilbert-Schmidt. Since the Hilbert-Schmidt norm is ||A||2H.S. = Tr(A†A), one may evaluate it
directly, (e.g. by computing

∫ |A(x, x′)|2).
Theorem 3.2. For any two bodies A, B such that

∫
A×B dxdy|G0(x, y)|2 < ∞, TAG0ABTBG0BA

is trace class.

Proof: First we show that TAG0AB and TBG0BA are Hilbert Schmidt operators. This can be
verified in the following way. We have just seen that TA, TB are bounded operators. Now note
that G0AB is Hilbert Schmidt, since,

||G0AB||2H.S =
∫

A×B
dxdy|G0AB(x, y)|2, (14)

which is finite under the condition above. Now the inequality ||TAG0AB||H.S ≤ ||TA||||G0AB||H.S

implies that TAG0AB is Hilbert-Schmidt. Finally using U, V ∈ H.S. ⇒ UV ∈ t.c. we see that
TAG0ABTBG0BA ∈ t.c. ¤
Corollary 3.3. For any finite bodies A, B, such that distance(A,B) > 0, and any Green’s
function which is finite away from the diagonal, TAG0TBG0 ∈ t.c.

60 Years of the Casimir Effect IOP Publishing
Journal of Physics: Conference Series 161 (2009) 012020 doi:10.1088/1742-6596/161/1/012020

5



Example 3.4. For the scalar field discussed above, G0(x, y) = e−ω|x−y|
4π|x−y| , the condition is satisfied.

In the same way it is satisfied for the electromagnetic field (one has to take into account also
matrix indices but these discrete indices do not change the finiteness of the integrals)

Remark 3.5. The ω integration in (11), is convergent. To see this note that G0 decays
exponentially with ω, therefore ||G0||H.S. decays exponentially, also the ||T ||’s do not grow more
then quadratically in ω.

In the EM case one may also worry due to the factor 1
ω2 appearing in D0ij(x, y) =

(δi,j − 1
ω2∇(x)

i ∇(y)
j )G0(x, y) about convergence for ω ∼ 0. This factor, however, gets cancelled

since ||T || ≤ ω2||χ|| as shown in lemma 3.1.

One may also show that G0AB are t.c. themselves by using H.S. properties. The bodies
are assumed not to touch, thus we can choose a C∞

0 (compactly supported and infinitely
smooth) function fA, such that PAfA = PA, and PBfA = 0 where PA, PB are the projections on
L2(A), L2(B) (i.e. fA(x) = 1 for x ∈ A, and it then smoothly goes to 0, before reaching body
B) .

Writing:

G0AB = L1L2 (15)
L1 = PA

1
(p2+ω2)α ; L2 = (p2 + ω2)αfAG0PB,

we see that if 2α > d,

||L1||2H.S. = Tr(PA
1

(p2+ω2)α )(PA
1

(p2+ω2)α )† = (16)

V ol(A)
∫

ddp| 1
(p2+ω2)2α | < ∞

and so L1 is Hilbert Schmidt. Next, we check that L2 ∈ H.S.. To see this last point, note that

< x|L2|x′ >=< x|(p2 + ω2)αfAG0PB|x′ >= (17)
(−4x + ω2)αfA(x)G0(x− x′)PB(x′)

Since G0(x − x′) is smooth away from x = x′, where the expression is anyway zero because
fAPB = 0, and since 〈x|L2|x′〉 has compact support we see that ||L2||2H.S. =

∫
dxdx′|L2|2 < ∞.

Thus, G0AB can be written as a product of two H.S. operators, and as such is trace class.
Finally, we have that

Theorem 3.6. (Eigenvalues of TGTG) For χ > 0, all eigenvalues λ of the (compact) operator
TAG0ABTBG0BA appearing in (11) satisfy 1 > λ ≥ 0.

Proof: We will use repeatedly that for bounded operators X, Y the nonzero eigenvalues of
XY and Y X are the same. Note first that G0, χ ≥ 0 (as operators) implies

spec(χG0) \ {0} = spec(
√

G0χ
√

G0) \ {0} ⊂ [0,∞). (18)

Writing TαG0 = 1 − 1
1+ω2χαG0

as an operator on L2(R3) it is then clear that its spectrum lies
in [0,1). The same conclusion then applies to the operator

√
G0Tα

√
G0 but since it is hermitian

one concludes also ||√G0Tα

√
G0|| < 1 from which it follows ||√G0TAG0TB

√
G0|| < 1 and hence

λ < 1. Similarly
√

G0Tα

√
G0 ≥ 0 imply λ ≥ 0 ¤
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4. The Electromagnetic Case
Here we follow the approach of [15]. The statistical properties of the electromagnetic field in a
medium are described by the appropriate photonic Green’s function. The electromagnetic fields
are derived from the electromagnetic potentials Aα, α = 0, .., 3. (It is convenient to work in the
gauge A0 = 0.) The retarded Green’s function Dik is defined by:

DR
ik(X1, X2) = (19)

{ 〈Ai(X1)Ak(X2)−Ak(X2)Ai(X1)〉 t1 < t2
0 otherwise

where X1, X2 are 4-vectors (X0
1 , ..X3

1 ) and k, i = 1, ..3. The angular brackets denote averaging
with respect to the Gibbs distribution.

The interaction of the electromagnetic field with a classical current J put in the medium is
given by:

V = −1
c

∫
J ·A.

Kubo’s formula allows us to treat this interaction within linear response. By Kubo’s formula
the mean value Ai in presence of a current J satisfies:

Ai(r)ω = − 1
~c

∫
DR

ik(ω; r, r′)Jk(r′)ωd3r′, (20)

where
DR

ik(ω; r, r′) =
∫ ∞

0
eiωtDR

ik(t; r, r
′)dt (21)

The function D is sometimes referred to as the generalized susceptibility of the system [15].
From Maxwell’s equations it follows that in a medium with a given permittivity tensor εij ,

permeability tensor µij , and current J, the vector potential Ai satisfies:

(∇× (µ−1∇×)− ω2

c2
ε)A =

4π

c

−→
J ω (22)

Substituting (20) in (22), we see that D is a Green’s function for the equation:

∇× µ−1∇×D − ω2

c2
εD = −4π~Iδ(r− r′) (23)

where I is the 3-dimensional unit matrix.
To get the energy we now simply use the TGTG formula (11) with the scalar propagator G0

replaced by the vector propagator D0 everywhere (including in the definition of the T operators)
(for details see [12]). Here the explicit expression for D0 is

D0ij(k, iω) = − 4π~
k2 + ω2c−2

(δij +
c2kikj

ω2
) (24)

5. Dielectric in front of a mirror
A somewhat simplified, but useful in practice, version of our formula is obtained in the case of
a body placed close to a mirror. Consider the body A to the left of a Dirichlet mirror B located
at xn = a/2. It is well known (using the image method) that the effect of the Dirichlet mirror
is to replace the free propagator G0 by

GB(x,x′) = G0(x,x′)−G0(x, J(x′)) (25)
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where J(x‖, x⊥) = (x‖, a−x⊥) denotes reflection through the mirror plane. This may be written
as GB−G0 = −G0J where J is the operator defined by Jψ(x) = ψ(J(x)). Noting the standard
relation (5) GB = G0 − G0TBG0 between the Green function in the presence of scatterer B to
its T matrix one concludes G0TBG0 = G0J which when substituted in (11) gives

EC(a) =
∫ ∞

0

dω

2π
log det(1−G0J TA) (26)

An alternative (though closely related) approach is to note the energy it costs to place a body
A near a mirror B is

EC =
∫ ∞

0

dω

2π
log detΛ(1 + ω2χA(x, iω)GB(x,x′)).

Subtracting the energy EC =
∫∞
0

dω
2π log detΛ(1 + ω2χA(x, iω)G0(x,x′)) it costs to put A in

vacuum then gives the Casimir interaction energy. Using the relation

(1 + GBVA)/(1 + G0VA) = (27)
1 + (GB −G0)TA = 1−G0J TA

leads again to (26).
Yet another way of obtaining the same result is by substituting χB = λδ(xn − a/2) in the

definition of TB and doing the algebra. One then finds

G0TBG0 = (28)
∫

d2k⊥
(2π)2

eik⊥(x−x′)⊥ λω2

2q(λω2+2q)
e−q|xn|−q|x′n|

∣∣∣
q=
√

ω2+k2
⊥
,

which in the limit λ → ∞ reduces, as expected, to the expression G0J obtained through the
image method.

We now address the case of a Neumann mirror. Note that the Green function in the presence
of a Neumann mirror is G = G0 + G0J . By repeating the arguments above we find that the
Casimir interaction between an object A and a Neumann mirror is given by a similar formula
to (26), involving the determinant det(1 + G0J TA). We remark that while the Dirichlet mirror
may be considered as the limit λ →∞ of a dielectric having e.g. χB = λδ(xn−a/2) (or in more
realistic model χB = λθ(xn − a/2)) it is hard to find a simple analog χB(x) that would lead in
a similar limit to a Neumann mirror.

A similar treatment is applicable in the more physically relevant EM case. The boundary
conditions E‖ = 0 may be enforced by requiring the vector potential to satisfy JA = −A
where J is defined to act on vectors as JA(x) = (A‖(J(x)),−A⊥(J(x))) (Here A‖, A⊥ denote
the components of A parallel and normal to the mirror surface. The temporal component
is considered as a parallel component though in practice we usually choose a gauge where it
vanishes.)
The EM Casimir interaction between a dielectric and a mirror is then given by a formula similar
to (26) with G0,J replaced by the EM propagator D0 and the vectorial J defined above.

It is interesting to consider also an ideal permeable mirror (having µ → ∞, ε = 1). This
corresponds to the boundary condition B‖ = 0 which may be enforced by requiring the vector
potential to satisfy JA = +A. Thus the Casimir interaction of body A with such a mirror will
be given by an expression involving the determinant det(1 + TAD0J ).
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6. Separable Potentials
Here we show a simple example where everything can be computed immediately in the TGTG
approach. The example is based on so called ”separable potentials”. Such potentials arise in
variety of situations in physics and in mathematics, and were first introduced for Casimir type
problems by Jaffe and Williamson [21]. They correspond to ”rank 1” perturbations, and can be
written as V = |f〉〈f | for some function f , or in x space notation, the perturbation V has the
kernel V (x, x′) = f(x)f(x′).

For such potentials, one may readily calculate the T operators, which turn out to be also of
rank 1, and so the interaction energy is easily calculated. We compute T :

T = 1
1+V G0

V =
√

V 1
1+
√

V G0

√
V

√
V = (29)

1
1+〈f |G0|f〉 |f〉〈f |,

and so we have

log det(1− TAG0TBG0) = (30)
log(1− 1

1+〈fA|G0|fA〉
1

1+〈fB |G0|fB〉 |〈fB|G0|fA〉|2)
Since the (positive) terms 1

1+〈fA|G0|fA〉
1

1+〈fB |G0|fB〉 do not depend on the distance, to find the
direction of the force it is enough to consider |〈fB|G0|fA〉|.

Let us show that the force can be repulsive when both VA and VB are positive perturbations.
We take the following functions: fA = α1δ(x + a) + α2δ(x + a + 1) and the potential in B is
defined by fB = β1δ(x − a) + β2δ(x − a − 1); here we assume that these points all lie on a
particular line, which is the x direction.

We choose ω = 1 for simplicity and compute:

〈fA|G0|fB〉 = (31)

α1β1
e−2a

2a + (α1β2 + α2β1) e−2a−1

2a+1 + α2β2
e−2a−2

2a+2 .

Upon choosing: α1 = 1, α2 = −20, β1 = 10, β2 = −1, and distance a = 0.15 we get

∂a|〈fA|G0|fB〉|2 ∼ 2200 > 0,

implying that (30) gives a repulsive contribution for the energy at this distance and frequency.
It is possible to extend this example so that even integration over frequencies is still repulsive.
This will be reported elsewhere.

7. Dilute limit
In the following sections we consider strategies of using the TGTG formula in actual calculations.
A particularly simple case is when χ is small, which is commonly referred to as the ”dilute” case
(and sometimes as ”low contrast”). Here we briefly sketch how to best use the formula in this
limit. As shown in Theorem 3.6, one always has ||TGTG|| < 1, therefore we may expand the
log det(1− ..) expression (11) in powers:

EC = −
∫

dω

2π

∑ 1
m

Tr(TAG0TBG0)m (32)

In the dilute limit χα < 1, so one may also substitute the expansion

Tα = −
∞∑

n=0

(−ω2χαG0)nω2χα (33)

in (32) and compute the involved integrals to desired order. This expansion is the continuum
equivalent to summation of two body forces, and is equal to the Born series appearing, for
example, in [15].
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8. Scattering Approach
As remarked above, the operator TAG0TBG0 appearing in our formula is closely related to
scattering data. The purpose of this section is to clarify this relation and make it more explicit.
In order to keep better touch with conventions used in scattering theory, we usually avoid in
this section using Wick rotation and thus we work in Lorentzian rather than Euclidean space,
with a real rather then imaginary frequency and with the Feynman rather than the Euclidean
propagator G0.

As mentioned above, the arguments of G0 in (11) never coincide, implying that when
G0(xa, xb) is considered as a function of xb alone it is a solution of the (homogeneous) free
wave equation. Thus one may expand G0(xa, xb) in the form

∑ Cαβφ∗α(xa)φβ(xb) where
{φα(xa)}, {φβ(xb)} are some sets of free wave solutions of energy ω. There is of course great
freedom in choosing the sets {φα(xa)}, {φβ(xb)}. In practice one would choose these in a way that
makes subsequent calculations easier. As mentioned earlier we consider TAG0TBG0 as acting
only on the volume of object A, therefore these considerations also apply to the propagator on
the right of this expression.

The Lippmann-Schwinger operator T (ω) is related to the S-matrix by 2

S = 1− 2πiδ(ω2 − ω′2)T (ω). (34)

Therefore T (ω) has the property that its matrix element 〈α|T |β〉 between a pair of free states
α, β having energy ω is equal to the corresponding matrix element of the transition matrix.
Since the operator TB in TAG0TBG0 is sandwiched between a pair of free Feynman propagators
corresponding to energy ω, we may identify it with the corresponding transition matrix. Due to
the cyclicity of the determinant det(1− TAG0TBG0) the same is true of TA.

Substituting the expansion G0(xa, xb) =
∑ Cαβφ∗α(xa)φβ(xb) we arrive at

TAG0TBG0 =
∑

αα′ββ′
TA|α〉Cαβ〈β|TB|β′〉Cα′β′〈α′|

The Casimir interaction will then be given explicitly by

E =
∫ ∞

0

dω

2π
log det(1−K(iω)). (35)

Here Kα′′α′ = (TA)α′′αCαβ(TB)ββ′Cα′β′ .

9. Partial waves expansion
In the following sections, we consider strategies of using the representation (35) by restricting
the K matrix to a finite subspace which gives the dominant contribution to the force. Indeed,
in many cases of interest only a few partial waves are significantly scattered, the best example
for this is when objects are far apart, and from a large distance look point like. At this limit
one expects significant contribution only from s-wave scattering. In the more general case, K
may be approximated by a finite dimensional matrix corresponding to several partial waves. In
order to see how this works in practice we consider below a few simple cases.

2 Most standard textbooks discuss the non-relativistic case and therefore include a factor δ(ω − ω′) instead of
δ(ω2 − ω′2). Writing the delta function in terms of momentum the two cases reduce to the same expression:
δ(k2 − k′2)
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One dimensional systems
A particularly simple case occurs when the system is one-dimensional. Consider, e.g., a scalar
field in 1D. All states of energy ω are then spanned by two modes: left and right movers
|L〉, |R〉 = 1√

2π
e±iωx. Hence in this case the determinant Eq (11) can easily be calculated

exactly. To see how this is done we write the Feynman propagator explicitly as

G0 =
∫ ∞

−∞

dk

2π

eikx

ω2 − k2 + i0
= − i

2ω
eiω|x| (36)

We consider a pair of scatterers A, B such that A is to the left of B. This immediately implies
that we have xa < xb and therefore

G0BA(xb, xa) = − i

2ω
eiω(xb−xa) =

−2iπ

2ω
|R〉〈R| (37)

Similarly we also have G0AB = −2iπ
2ω |L〉〈L|. Using this we see that the operator K in (35) turns

into the c-number

K = (
−2iπ

2ω
)2〈R|TA|L〉〈L|TB|R〉 = r̃A(ω)rB(ω). (38)

Here rB (r̃A) is the reflection coefficient for a wave hitting scatterer B from the left (A from the
right) to be reflected back. Note that the normalization of T implied by Eq (34) is responsible
to the cancelling of the factor −2iπ

2ω . (Had we used relativistic normalization for |L,R〉 the factor
2ω would not have appeared.) We thus conclude

det(1− TAG0TBG0) = 1− r̃A(ω)rB(ω).

The tilde on rA serves to remind us that it is the reflection coefficient from the right side of A.
We remark that r̃A(ω)rB(ω) depends implicitly on the distance between A,B through the

(phase) dependence of rA, rB on the scatterers locations. To make this explicit, note that moving
a scatterer a distance a affects the reflection coefficients as r → e−2iaωr, r̃ → e2iaω r̃.

Moving the scatterers a distance a apart therefore result in

det(1− TAG0TBG0) → (1− e2iaω r̃A(ω)rB(ω)).

Substituting in (35) we obtain the familiar formula for 1d Casimir interaction between scatterers
[8, 9, 16].

Multi-component field in 1d
The considerations used above for a single scalar field in one dimension extend to a situation
where φ = (φ1, φ2, ...φn) is an n component field. In this case the reflection coefficients rA,B

turn into n × n matrices and one finds det(1 − TAG0TBG0) = det(1 − r̃A(ω)rB(ω)) where the
determinant on the right is of a usual n× n matrix.

Plane wave expansion.
In physical three dimensional space there are many different possible ways to expand the
propagator G0(xa, xb) =

∑ Cαβφ∗α(xa)φβ(xb) in terms of free wave solutions {φα(xa)}, {φβ(xb)}.
In the next section we describe the expansion in spherical waves (which is probably the most
useful expansion), and we demonstrate its use to calculating the Casimir force between compact
object. However for the sake of simplicity we first describe here a plane wave expansion which is
the immediate generalization of eq(37). A simple heuristic way to arrive at this generalization

60 Years of the Casimir Effect IOP Publishing
Journal of Physics: Conference Series 161 (2009) 012020 doi:10.1088/1742-6596/161/1/012020

11



is to formally think of the field φ in three dimensions as one dimensional field having infinitely
many components labelled by its transverse momenta. Indeed, such point of view has been
successfully used in describing transport in quasi 1D conductors in mesoscopic physics, whereby
each transverse component corresponds to a scattering channel (see for example [17]). This
suggests splitting ~k into its z-component kz and its transverse components k‖ = (kx, ky). The
3d propagator may then be written as:

G0 = −
∫

d2k‖
(2π)2

iei|z|kzeik‖x‖

2kz

∣∣∣
kz=

q
ω2−k2

‖+i0

Here
√

ω2 − k2
‖ + i0 may be either real and positive (for ω2 > k2

‖) or pure imaginary (for ω2 < k2
‖)

in which case the i0 prescription implies that it must be chosen on the positive imaginary axis.
Assuming that A is located to the left of B along the z-axis it follows that

TAG0TBG0 =
∫ dkxdkydqxdqy

(2π)4
TA|(qx, qy,−qz)〉 × (39)

1
2qz
〈(qx, qy,−qz)|TB|(kx, ky, kz)〉 1

2kz
〈(kx, ky, kz)|,

where qz =
√

ω2 − q2
x − q2

y + i0 and kz =
√

ω2 − k2
x − k2

y + i0.

When considering only the terms satisfying ω2 > q2
x + q2

y , k
2
x + k2

y, eq. (39) indeed looks like
a straightforward generalization of the 1d result. However as this expression shows, to get the
correct result one must also include the contribution of evanescent waves (q2

‖ > ω2). Upon Wick
rotation, however, the distinction between ordinary and evanescent waves disappears. It may
also be noted that (since in general qz 6= kz) the variation of the 〈(qx, qy,−qz)|TB|(kx, ky, kz)〉
matrix elements upon moving B along the z-axis is considerably more complicated then in the
1d case.

The above representation may be helpful in problems where the scatterers A,B have exact
or approximate planar geometry (e.g. corrugated plates). Though the theorem guaranteeing
finite trace does not apply for infinite plates one may show that dividing by the plate area leads
to finite result. We remark that actual calculation of the determinant requires discretizing k‖
which corresponds to assuming large but finite plates. Alternatively, one may use eq. (32) with
continuous k‖.

10. Spherical waves expansion
When describing interaction between two compact bodies, often it is convenient to represent the
transition matrices T in a spherical wave basis. To do so, we choose two points PA, PB inside
bodies A, B respectively. We parameterize the points of body A by the radius vector ~r = ~rA

measured from the point PA and the points of B by the radius vector ~r′ = ~rB measured from
the point PB . The vector connecting PA and PB will be denoted by ~a (Fig.1). In the scalar
case, the free spherical waves centered at PA, PB are given by

|(lm)A,B〉 =

√
2ω2

π
jl(ωrA,B)Ylm(r̂A,B) (40)

with the normalization 〈ω′l′m′|ωlm〉 = δll′δmm′δ(ω − ω′).
To use (35), the scalar 3d Green function G0 = − eiωr

4πr , is expanded in terms of the spherical
harmonic functions centered around PA and those centered around PB.

Gω =
∑

lm;l′m′
|(lm)B〉Clm;l′m′〈(l′m′)A| (41)
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A B

−→
r A

−→
r B

−→
a

PBPA

Figure 1. Coordinate system used for the partial wave approach

where

Clm;l′m′(ω) = (42)

− iπ
2ω

∑
l′′,m′′ C

(
l l′ l′′
m m′ m′′

)
il
′′+l′−lh

(1)
l′′ (ωa)Yl′′m′′(â),

Ylm are spherical harmonics, jl, hl are spherical Bessel and Hankel functions, and the coefficients

C

(
l l′ l′′
m m′ m′′

)
have known expressions in terms of the 3j symbol or as an integral of

spherical functions:

C

(
l l′ l′′
m m′ m′′

)
= 4π

∫
dΩYlmY ∗

l′m′Y ∗
l′′m′′ =

= (−1)m
√

4π(2l + 1)(2l′ + 1)(2l′′ + 1)×(
l l′ l′′
0 0 0

) (
l l′ l′′
m −m′ −m′′

)
(43)

In actual computations it is often more convenient to use the Wick-rotated expression. This
may be expressed as Clm;l′m′(iω) = − π

2ω il
′−lglm;l′m′ . where the coefficients

glm;l′m′ = (44)
∑

l′′,m′′ C

(
l l′ l′′
m m′ m′′

)√
2

πωaKl′′+ 1
2
(ωa)Yl′′m′′(â),

are real. Equations(42,44) may be somewhat simplified by choosing the z-axis along â.
The above expansion of Gω allows expressing TAG0TBG0 in terms of matrix elements

〈l′m′|T |lm〉 of the transition matrices of the two scatterers. The Casimir interaction may then
be written as in (35) where

Klm;l′m′ = (45)
(−1)l1+l2(TA)lm;l1m1Cl1m1;l2m2(TB)l2m2;l3m3Cl3m3;l′m′ .

Here Clm;l′m′ are given by (42) or (44), summation over l1,m1, l2,m2, l3,m3 is implied and we
note that the extra sign resulted from Clm;l′m′(−â) ≡ (−1)l+l′Clm;l′m′(â) = Cl′m′;lm(â).

If we assume that only waves having l ≤ l0 are significantly scattered then K will turn
into a finite (l0 + 1)2 × (l0 + 1)2 matrix (since the dimension of the subspace l ≤ l0 is∑l0

l=0(2l + 1) = (l0 + 1)2). We stress that this argument does not require us to assume spherical
symmetry of the scatterers.
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When A,B are very far apart the interaction between them is governed by waves of very low
frequency and therefore also low l. At this limit the leading contribution comes from the s-wave
scattering transition matrix element 〈l = 0|TA,B|l = 0〉 ' 2ω2λA,B/π where λ is the scattering
length.

The matrix K then reduces to the scalar K = −ω2λAλB

(
h

(1)
0 (ωa)

)2
= 4π λAλB

a2 e2iaω. Doing
the integral (35) one arrives at

EC = −λAλB

a3
.

This limit corresponds to the scalar version of the well known Casimir-Polder interaction. Our
formalism however allows calculating corrections to it up to any desirable finite order in 1

a .
For example for two Dirichlet spheres of radii R1, R2 at distance a between their centers the
expansion gives:

E = −R1R2
4πa3 − R1R2(R1+R2)

8πa4 (46)

−R1R2(34R2
1+9R1R2+34R2

2)
48πa5

−R1R2(R1+R2)(2R2
1+21R1R2+2R2

2)
36πa6 + ...
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11. Appendix: Some properties of (infinite dimensional) operators
Here we recall some mathematical notions that we have used in describing the trace class
properties of (11).

Definition 11.1. For an operator B : H → H, the operator norm of ||B|| is defined as
||B|| = supψ∈H,ψ 6=0

|<ψ|B|ψ>|
<ψ|ψ>

Definition 11.2. An operator B is bounded if ||B|| < ∞
Definition 11.3. An operator A : H → H is called a positive operator (denoted A > 0) iff
〈ψ|A|ψ〉 ≥ 0 for every ψ ∈ H.

This implies that A is hermitian and its spectrum nonnegative. If A : H → H is a positive
operator then there exist a unique positive operator B : H → H satisfying A = B2. B is called
the square root of A and denoted

√
A.

Definition 11.4. An operator A : H1 → H2 is called trace class (and denoted A ∈ t.c. or
A ∈ J1) iff

∑ ||Aψn|| < ∞ where {ψn}∞n=1 is some orthonormal basis of H1. It can be shown
that this condition does not depend on the choice of the orthonormal basis. (Note that the
definition makes sense even when H1 6= H2.)

If A : H → H is trace class then for any orthonormal basis {ψn}∞n=1 of H the sum
∑〈ψn|A|ψn〉

converges to the same (finite) value which is denoted tr(A) and called the trace of A. One then
also has tr(A) =

∑
λn where {λn} are the eigenvalues of A (Lidski’s theorem)

If A : H → H is trace class then the determinant det(1 + A) may also be rigorously defined
and one has det(1 + A) =

∏
(1 + λn).

The following theorem may be proved using the well known fact that the Fourier coefficients
of a smooth K(x, y) decay faster than any power. (Note that these coefficients also serve as the
matrix elements with respect to Fourier basis of the operator defined by K.)
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Theorem 11.5. Consider an operator A : L2(D1) → L2(D2) where D1, D2 are some domains
in Rn which is given explicitly as an integral Aψ(x) =

∫
D1

K(x, y)ψ(y)dy. A sufficient condition
for A to be trace class is that D1, D2 are compact and K(x, y) is smooth in a neighborhood of
D1 ×D2.

Proposition 11.6. If A is trace class and B bounded then AB and BA are also trace class and
Tr(|AB|), T r(|BA|) ≤ ||B||Tr(|A|).
Definition 11.7. M is a Hilbert Schmidt operator (denoted M ∈ H.S. or M ∈ J2) if
||M ||2H.S. ≡ TrM †M < ∞

In particular we mention that the product of two Hilbert Schmidt operators always gives a
trace class operator.
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