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Abstract. Pulsed laser ablation in liquids (PLAL) synthesis of Nanoparticles (NPs) is a
bottom-up process with the advantage of the absence of chemical reagents in the solutions.
In this process, NPs shape and diameter distributions on PLAL experimental parameters.
We research the hydrodynamic diameter of the ZnO Nps correlation to media, wavelength,
fluence, and irradiation time. Nine solutions, five in methanol and four in ultra-pure water were
processed with fluences ranged from 4 to 15 J cm−2, target irradiation times from 8 to 15 min,
and for wavelength of 532 nm and 1064 nm. We characterized the morphology and diameter
distribution using Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS).
Results showed that prolonging the irradiation time, reduces the diameter of the ZnO NPs by
41.4 % in methanol and increases it by 19.8 % in ultra-pure water. Change of medium from
ultra-pure water to methanol revealed a maximum decrease of 84.2 % in NPs diameter while
lowering the fluence resulted in a 62.6 % diameter reduction. The experimental results indicate
that the medium and fluence were the most relevant parameters to obtain small NPs in methanol
media with 80 nm diameter at 5 J cm−2, a wavelength of 1064 nm, and 20 min irradiation time
and the diameter was less dependent on wavelength. Understanding the synthesis parameters
and their effect on Nps diameter dispersion is critical for the scaling-up production to meet the
PLAL’s promise of several grams per hour.

1. Introduction
Pulsed laser ablation in liquids (PLAL) synthesis of NPs is a bottom-up process with the
advantage of the absence of chemical reagents and application under ambient pressure and
temperature conditions [1, 2, 3]. The versatility of PLAL has been demonstrated by its capacity
to produce NPs from noble metals, metal oxides, organic materials, and semiconductors with
size-dependent optical, magnetic, and catalytic properties [4]. Aiming to produce nanoparticles
for energy harvesting applications, we applied PLAL for the production of ZnO NPs. ZnO
can be obtained from either a metallic or an oxide target [5, 3]. Additionally, ZnO is also
attractive for its high piezoelectric constant d33 of 360 × 10−12 C N−1 and relative permittivity
of 3800, wich makes it an excellent material for piezoelectric generators, sensors and actuators
[6, 7, 8, 9, 10]. Controllable synthesis of NPs to engineer critical physical characteristics such as
the particle shape, size in order to achieve the desired properties for energy applications requires



9th SAC and 1st ICNNN - Colombia 2019

Journal of Physics: Conference Series 1541 (2020) 012019

IOP Publishing

doi:10.1088/1742-6596/1541/1/012019

2

ZnO Target

Ablation medium
(methanol or ultra-pure water)

Focused
laser beam

Focus lens

Mirror

ND-YAG laser
Pulse duration = 9ns
λ = 532 or 1064 nm

Variable �uence

Laser Beam

Rotating stage

Figure 1: Schematic of the PLAL synthesis: an ND:YAG laser operating at the fundamental
wavelength (1064 nm) and its harmonic (532 nm) laser is directed to a mirror, the reflection is
focused the ZnO target that is submerged in liquid medium (methanol or ultra-pure water).

the understanding of the impact of the PLAL parameters: liquid medium, fluence, wavelength,
and irradiation time [11].

In existing literature, multiple authors have studied the ZnO NPs synthesis by PLAL and
the variation of its parameters from a metallic zinc target [3, 5, 12, 13, 14, 15, 16]. The use
of nanosecond pulsed laser produced a decrease of NP diameter from 16 to 10 nm when using
water compared to methanol as liquid medium [12]. In contrast, using a millisecond pulsed laser
generated ZnO nanorods in water and spherical ZnO NPs in ethanol [13]. Reducing the fluence
from 39.6 to 8.7 J cm−2 exhibited a decrease from 88 to 39 nm in diameter, while increase from
30 to 40 nm diameter was detected when using 532 nm compared to 1064 nm [5]. A wavelenght of
355 nm produced a diameter reduction from 20 to 4 nm when compared to 532 nm and 1064 nm
[14]. We research the production of NPs from a zinc oxide target by varying multiple parameters
to understand its effects on the nucleation, growth, coalescence of nuclei, and aggregation NPs.

In this study, we fabricated NPs from a ZnO target using the PLAL technique. We
studied variations of the experimental parameters.We used Dynamic Light Scattering (DLS)
and Scanning Electron Microscopy (SEM) techniques to analyze the samples produced. Then
a discussion is given on the preliminary results that suggest a strong correlation between liquid
medium, fluence, and irradiation time parameters and the ZnO NPs diameter.

2. Materials and methods
Experimental setup is shown in Figure 1: a ND-YAG laser (Spectra Physics) operating at
1064 nm fundamental wavelength and 532 nm second harmonic with pulse duration of 9 ns. The
laser was pointed to a mirror, which reflected and focused the beam, passing through the lens
on a 100 mL beaker filled with methanol (99.8 %, Merck) and Type 1 water (also called ultra-
pure water, obtained via Barnstead E-Pure D4641 water purification system, ThermoFisher
Scientific). A 5N ZnO sputtering target (EJTZNOX501A2, Kurt J. Lesker Company) was
placed at the bottom of the beaker resting on a motorised rotating platform..

The PLAL synthesis of the ZnO NPs depended on the pulsed laser ZnO target interactions
in methanol and water media. It involves the process of energy absorption, plume formation
and expansion, nucleation of ZnO NPs, the coalescence of liquid nuclei, and aggregation of NPs
[17, 16]. This process can be divided into three stages, as described in the literature [17].
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2.1. Early stage:
Once the laser pulse is emitted and directed to the ZnO target submerged in methanol or ultra-
pure water, at their interaction, induced energy absorption is determined by the laser fluence,
wavelength, and pulse duration (9 ns). In previous works this experimental system for the study
of plasma or in the growth of thin films of different semiconductors has been used [18, 19].
Then, the ZnO target produced shock waves inside the target and media producing the release
of vaporized ZnO and media species, forming what is known as cavitation bubble or plume.

2.2. Intermediate stage:
After the formation of the plume, the shortwave expands, followed by an adiabatic expansion of
the plume. Then, the plume expansion, the released energy and vapors cause supersaturation
conditions, which start the nucleation process and the coalescence between liquid nuclei and
aggregation between NPs.

2.3. Later stage:
At this stage, the plume collapses, releasing the ZnO vapors and NPs into the medium in a
colloidal solution. If the medium reaches ZnO supersaturation, it causes the additional NPs
formation by new nucleation points. Furthermore, the released energy from the collapse can
cause the second iteration of coalescence and aggregation by the collisions between the ZnO liquid
nuclei and NPs formed during the intermediate and later stages. These collisions rates depend
on the media temperature, which is proportional to fluence, pulse duration, and irradiation time.

During any of the above described stages, other two events can affect the final NPs diameter
distribution. Firstly, the liquid medium can react chemically with the ZnO target, vaporized
species, liquid nuclei, and NPs resulting in changes in growth and aggregation processes [12].
Secondly, suspended NPs in the liquid medium can intersect the laser path, causing a secondary
ablation and therefore reducing the diameter distribution [16].

Sample Medium Wavelength Fluence Irradiation Time
(nm) (J cm−2) (min)

ZnO-1

Methanol

532 10 8
ZnO-2 532 5 13
ZnO-3 1064 4 20
ZnO-4 1064 5 16
ZnO-5 532 5 10
ZnO-6

Type 1 Water

1064 5 25
ZnO-7 1064 10 10
ZnO-8 532 15 15
ZnO-9 532 5 10

Table 1: ZnO NPs samples synthesized by PLAL and experimental parameters varied during
the synthesizing process: medium, laser wavelength, fluence, and irradiation time.

In our experiment we varied the wavelength, the media, the fluence, the irradiation time, nine
samples were produced: five in methanol and four in ultra-pure water at a 532 nm and 1064 nm
wavelengths, fluences ranged from 4 to 15 J cm−2 and irradiation times from 8 to 25 min, the
NPs fabrication based on the tuning of the synthesis parameters is reported in Table 1. DLS
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(ZetaSizer Nano ZS, Malvern Panalytical) was used to measure the hydrodynamic diameters
after the PLAL process. We used EDAX- SEM (Lyra 3, Tescan) to analyze the NP’s morphology
and composition.. SEM samples were prepared by the drop-drying method: a 5 µL ZnO NPs
suspension was deposited on a flat 3× 3 cm2 intrinsic silicon wafer (Optim Wafer Services) that
was left dry for 30 min. All the characterizations were performed at room temperature (25 ◦C).

3. Results and discussion
Figures 2a and 2b show the hydrodynamic diameter distribution of the synthesized ZnO NPs in
methanol and water, respectively. The analysis of the irradiation time variation was performed
by comparing the mean hydrodynamic diameter D̄h and the relative standard deviation σ% of
two samples produced in the same medium, wavelength, and fluence. Samples are compared
in two sets, the first produced in methanol and the second in ultra-pure water. The first
set of samples ZnO-2 and ZnO-5 were produced at irradiation times of 13 min and 10 min, at
532 nm, and 5 J cm−2. Here, the increase of 30 % irradiation time produced a 41.3 % decrease
in D̄h and minimal change in σ% (< 3 %). The second set of samples ZnO-7 and ZnO-8 were
produced at irradiation times of 10 min and 15 min, at 1064 nm, where a 50 % increment of
irradiation time resulted in a 19.8 % increment of D̄h and a reduction of 56 % of σ%. The
comparison of thermal conductivity (κ) of the two media (0.2 W m−1 K−1 for methanol [20],
and 0.6 W m−1 K−1 for water [21]) show that water has greater ability to conduct heat in the
solution inducing aggregation and coalescence. Thus, increasing the NPs D̄H in the late stage
of ablation. In methanol, the lower κ resulted in decreased media absorption of the thermal
energy, which limited the NPs movement in the medium, decreasing the ablation of NPs caused
by the interception of the laser path. Hence, reducing its effect on σ%.

Additionally, SEM images of the samples displayed in Figure 2c for methanol and 2d for
ultra-pure water show that the produced ZnO NPs were spherical with no noticeable surface
imperfections or bumps regardless of the tuned parameters. The stable nanoparticle shape
indicates that liquid ZnO nuclei coalescence dominated over solidified ZnO NPs aggregation
in the late stage of ablation. Aggregations in ZnO-1 to ZnO-5 demand further study in the
synthesis process and SEM sample preparation. EDAX results show methanol residues near to
the aggregated NPS [22].

The influence of the medium, fluence, and wavelength parameters on the average
hydrodynamic diameter D̄h and the error bars σ in the two media (represented in yellow for
ultra-pure water and violet methanol), at two wavelengths (532 nm in green and 1064 nm in
magenta) are shown in Figure 2e. Liquid medium variation can be studied by comparing the
samples ZnO-5 (in methanol) and ZnO-9 (in ultra-pure water) synthesized at a wavelength of
532 nm, fluence of 5 J cm−2, and irradiation time of 10 minutes where methanol produced a
reduction of 73.2 % on D̄H . For all the synthesized NPs in methanol medium, D̄H was reduced
from 46.4 to 84.2 % compared to ultra-pure water with identical wavelengths and similar fluence
and irradiation time. The D̄H reduction could be a result of the limited heat transfer from
the plume to methanol. The plume energy promotes its expansion and the increase of NPs
nucleations in the intermediate stage of ablation; this also affects the nucleation in the next stage
as it reduces the amount of vaporized ZnO available for the second nucleation that produces NPs
with increased diameter [17]. Another explanation of the D̄H variation relies on methanol and
ZnO chemical reactions. Previous studies indicate that the ZnO surfaces could absorb methanol,
were oxygen species of the ZnO NPs interact with methanol yielding formaldehyde and formic
acid in the plume at high temperatures (> 1000 ◦C [11]); this creates a shell that limits the
ZnO NPs growth. Residues of carbon, along with zinc and oxygen, were identified in the EDAX
analysis in Figure 2f, which support this hypothesis.

ZnO D̄H effect from fluence variation was studied by comparing samples ZnO-1 and ZnO-2
produced in methanol, at 532 nm, and irradiation time of 8 min and 13 min, a decrease of 62.6 %
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Figure 2: Normalized ZnO NP hydrodynamic diameter distributions are shown in (a)
for methanol, and (b) for ultra-pure water, the peaks are labeled with the corresponding
wavelengths, fluence, and irradiation time experimental parameters. SEM images of eight
samples are shown in (c) for methanol, and (d) for ultra-pure water, images are colored in
pseudo-color, green indicates zones with ZnO NPs produced at 532 nm and violet at 1064 nm.
The effect of the different medium is presented in (e); in blue for methanol and yellow for ultra-
pure water, symbols in green indicates samples produced at 532 nm and violet at 1064 nm. An
EDX analysis of a single NP in ZnO-5 sample is shown in (f), inset indicates the analyzed region
on the sample.
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in D̄H was observed at a third of the laser fluence. Moreover, the samples produced in ultra-
pure water, ZnO-7 and ZnO-8 at 1064 nm, and irradiation time of 10 min and 15 min exhibited
a reduced reduction of 16.5 % at half the fluence. The D̄H increment at higher fluence can be
related to the increase of ZnO volume expelled from the target in the early stage of ablation
caused by the additional energy absorbed by the ZnO target. The additional vaporized ZnO
can increase D̄H under three scenarios. First, the growth of ZnO NPs was increased due to the
increase of ZnO species available during the intermediate stage. Second, the distance between
generated NPs was decreased as the ZnO nuclei increased in number in the intermediate stage
and caused increased aggregation and coalescence during the plume collapse in the later stage of
ablation. Third, the vaporized ZnO species not consumed in the intermediate stage were released
in the liquid medium during the late stage and caused new nucleation points that resulted in
bigger NPs compared to the ones produced in the intermediate stage.

The studied the effect of the wavelength by comparing samples ZnO-2 and ZnO-4, produced
in methanol, at an equal fluence of 5 J cm−2, and similar irradiation time of 13 min and 16 min.
ZnO-2 was synthesized at 532 nm wavelength while ZnO-4 at 1064 nm. Despite the difference of
wavelength, the difference in D̄H and σ% are under 3 % and 10 %, respectively. Therefore, the
change wavelength produced no significative effect on the NPs diameter distribution.

4. Conclusions
In this research, we demonstrated that the irradiation time, medium, and fluence the significantly
affect the diameter distribution of the ZnO NPs synthesized by PLAL. The change of medium
from ultra-pure water to methanol exhibited the most substantial reduction of 84.2 % on the
ZnO NPs hydrodynamic diameter, followed by the decrease of 62.6 % by the lessening of the
fluence. At the same time, the increment of irradiation time resulted in the reduction of the
hydrodynamic diameter by 41.3 % for samples prepared in methanol and an increase of 19.8 %
in ultra-pure water. The change of wavelengths slightly affected the ZnO NPs diameter. The
presented results provide key information for the understanding of the effect of PLAL synthesis
parameters in the NPs diameter distribution, which is useful to meet the PLAL production
scale-up promise of several grams per hour.
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