This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

A preliminary study of oxides of Fe doped with Ba, Co, Cu and synthetized by the citrate sol–gel combustion route

, , , and

Published under licence by IOP Publishing Ltd
, , Citation Sandra F. Basante-Delgado et al 2020 J. Phys.: Conf. Ser. 1541 012013 DOI 10.1088/1742-6596/1541/1/012013

1742-6596/1541/1/012013

Abstract

In the present work we report the synthesis of mixed ferrites doped with Co2+, Cu2+ and Ba2+ cations, using citrate sol–gel combustion route in air atmosphere, at 950 °C for 3 hours, produced substituted M-type barium ferrites powders particles with crystallite sizes varying between 145 and 155 nm. The percentages of yield obtained were on average 42%. The synthesized ferrites were characterized by techniques such as powder X-ray diffraction, evidencing the formation of M-type barium hexaferrite and copper and cobalt substituted M-type barium ferrite with hematite in smaller proportion. The possible growth of M-type barium ferrite with copper and cobalt may be due to a larger size of the cobalt atom with respect to copper and that a higher proportion of cobalt salt was used in the synthesis route. Increase in the metal ion substituted content leads to a decrease in the lattice strain and may be responsible for an increase in the crystallite size because greater tensile strain leads to elongation of the particles. The particle size of the synthesized ferrites differs significantly when they are doped, with Ferrite doped with copper having the smallest particle size compared to Ferrite doped with cobalt. We also performed spectroscopic analyses, RAMAN that showed, the substitution of cooper or cobalt in the M-type barium ferrite powders particle leads to a minor intensity of resonance band when compared with the parent compound and the differences between Fe3+, Cu2+ and Co2+ ions in a tetrahedral coordination is their ionic radii. The increase in the ionic radii causes a local distortion and vibrational bands of distorted polyhedra in substituted M-type barium ferrites. The chemical composition of this sample was determined as Ba1.0Fe11.83O19.22, Ba1.0Co1.02Fe11.01O18.35 and Ba1.02Cu0.56Fe11.35O18.26 using an AAS device. Both are very close to the theoretical formula. The influence of the synthesized ferrite samples was explored in the ozonation of a dye of unknown chemical structure. The effect was evidenced by visible ultraviolet spectroscopy technique. The results obtained show that the ink could be decolorized by applying oxidation by ozonation, however, when substituted M-type barium ferrite is added, the discoloration increases when this is doped with copper and cobalt, being higher using this last ferrite. The degradation process by ozonation presented in this work, carried out in the presence of copper and cobalt substituted M-type barium ferrites, would constitute an example of technology for the environment.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/1541/1/012013