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E-mail: Alexey.Tikhomirov@novsu.ru 

Abstract. A program that implements a Markov inhomogeneous monotonous random search 

algorithm of an extremum with normal distributions is presented. This program allows to solve 

a fairly wide class of problems of finding the global extremum of an objective function with a 

high accuracy. 

1. Introduction 

Let the objective function 𝑓: ℝ𝑑 ↦ ℝ take the minimum value at a single point 𝑥∗. Let us consider the 

task of finding a global minimum point 𝑥∗ with a given accuracy 휀 > 0. One way to solve this problem 

is to use algorithms for randomly searching for the extremum of a function (see [1–18]). Such methods 

have long been successfully used in solving complex optimization problems. Theoretical studies of the 

rate of convergence of some Markov search algorithms are given in [3, 11–17]. This paper is a 

continuation of [11, 17] and is devoted to a computer program that implements one of the algorithms of 

the inhomogeneous Markov monotone search for an extremum using the normal probability distribution. 

The presented computer program supplements the program [19], which implements a homogeneous 

random search algorithm using a different (non-normal) probability distribution. 

2. Formulation of the problem 

As an optimization space, we will consider the space 𝑋 = ℝ𝑑 with the Euclidean metric 

𝜌(𝑥, 𝑦) = (∑(𝑥𝑛 − 𝑦𝑛)2

𝑑

𝑛=1

)

1∕2

, 

where 𝑥 = (𝑥1, … , 𝑥𝑑) and 𝑦 = (𝑦1, … , 𝑦𝑑). A closed ball of radius 𝑟 with center at 𝑥 is denoted by 

𝐵𝑟(𝑥) = {𝑦 ∈ ℝ𝑑: 𝜌(𝑥, 𝑦) ≤ 𝑟}. Let ℱ be the 𝜎-algebra of Borel sets в ℝ𝑑. By 𝜇 we denote Lebesgue 

measure on Borel subsets of ℝ𝑑. 

To search for the minimum point, we use the inhomogeneous Markov monotonic random search (see 

[3, 11, 17]), described later using a simulation algorithm. The notation “휂 ← 𝑃( ⋅ )” reads like this: “get 

the realization of a random vector 휂 with distribution 𝑃”. For numbers and points in an optimization 

space, operations of the form 𝑘 ← 1 and 𝜉 ← 𝑥 denote ordinary assignment operations. 

Algorithm 1 

Step 1. 𝜉0 ← 𝑥, 𝑘 ← 1. 

Step 2. 휂𝑘 ← 𝑃𝑘(𝜉𝑘−1, ⋅ ). 

Step 3. If 𝑓(휂𝑘) ≤ 𝑓(𝜉𝑘−1), then 𝜉𝑘 ← 휂𝑘, otherwise 𝜉𝑘 ← 𝜉𝑘−1. 
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Step 4. If 𝑘 = 𝑁, complete the operation of the algorithm. 

Step 5. 𝑘 ← 𝑘 + 1 and go to step 2. 

Here 𝑥 — is the starting point of the search, 𝑁 is the number of search steps, 𝑃𝑘(𝑥, ⋅ ) are Markov 

transition functions (see [3, 11, 17]). 

In the first step of algorithm 1, the random search is initialized. The starting point of the search 

becomes the point 𝑥 (operator 𝜉0 ← 𝑥), and the number of the next search step 𝑘 becomes equal to one 

(operator 𝑘 ← 1). 

At the second step of algorithm 1, we obtain a new “trial” point 휂𝑘 in the optimization space. We 

randomly select a new “trial” point using the distribution 𝑃𝑘(𝜉𝑘−1, ⋅ ). The distribution 𝑃𝑘(𝜉𝑘−1, ⋅ ) 

depends on the search step 𝑘 and the position of the old search point 𝜉𝑘−1. Such a relationship can 

improve the efficiency of random search. The transition functions 𝑃𝑘(𝑥, ⋅ ) will be called trial transition 

functions. In [18], a search was considered, the trial transition functions of which were not explicitly 

dependent on the step number 𝑘 (that is, they had the form 𝑃𝑘(𝑥, ⋅ ) = 𝑃(𝑥, ⋅ )). Such a search is called 

homogeneous. Here we will consider a inhomogeneous search, the trial transition functions 𝑃𝑘(𝑥, ⋅ )  
of which explicitly depend on the step number 𝑘. Due to the inhomogeneity can improve search 

efficiency. But such a dependence complicates the choice of search parameters, and the “right” choice 

of search parameters can be a difficult task (see, for example, [7]). 

In the third step of algorithm 1, we compare the new trial point 휂𝑘 with the old search point 𝜉𝑘−1. If 

the new trial point 휂𝑘 is not worse than the old search point 𝜉𝑘−1 (that is, if the following inequality 

holds 𝑓(휂𝑘) ≤ 𝑓(𝜉𝑘−1)), then the search goes to the new point 휂𝑘 (the following operator is executed 

𝜉𝑘 ← 휂𝑘), otherwise the search remains at the old point (the following operator is executed 𝜉𝑘 ← 𝜉𝑘−1). 

In the fourth step of algorithm 1, we check the condition for stopping the search. In this case, a very 

simple search stopping criterion is selected. The search simply performs a predetermined number of 

steps 𝑁, and stops after that. 

Note that the second, third, fourth and fifth steps of algorithm 1 are repeated cyclically 𝑁 times. The 

first step of algorithm 1 is performed only once. 

Note also that the random search introduced is monotonic, in the sense that the inequalities 𝑓(𝜉𝑘) ≤
𝑓(𝜉𝑘−1) are satisfied for all 𝑘 ≥ 1.  

3. Selection of trial transition functions 

The key question of choice for the type of search under investigation is the choice of the type of trial 

transition functions 𝑃𝑘(𝑥, ⋅ ). When choosing transition functions, two criteria are usually used. First, 

the search must be sufficiently effective (require not too many steps to solve the problem). In addition, 

the modeling of the 𝑃𝑘(𝑥, ⋅ ) distributions should be fairly simple. 

A homogeneous search was considered in [18], the trial transition functions of which did not 

explicitly depend on the step number 𝑘 (that is, they had the form 𝑃𝑘(𝑥, ⋅ ) = 𝑃(𝑥, ⋅ )). Therefore, there 

we had to choose one transition function. Here we need to select 𝑁 different transition functions, where 

𝑁 is the number of search steps. It is clear that this significantly complicates the task. In addition, 

estimates of labor intensity were obtained and investigated for homogeneous search in [12–14]. These 

results were used to select a trial homogeneous search transition function. In [18], the transition function 

𝑃(𝑥, ⋅ ) was used as a trial transition function of a homogeneous search, which minimizes the estimate 

of the complexity of a random search when optimizing the simplest objective function. Unfortunately, 

there are no such general theoretical results for inhomogeneous search. 

Very often, the normal probability distribution is used as trial transition functions (see, for example, 

[5, 7]). In this paper, we also use the normal probability distributions. To construct the search, it remains 

for us to choose the standard deviations for the normal distributions used. To select these standard 

deviations we use heuristic considerations. Consider a homogeneous Markov monotone random search, 

the trial transition function 𝑃(𝑥, ⋅ ) of which minimizes the estimate of the complexity of the random 

search studied in [12–14] when optimizing the simplest objective function. This search has several 

advantages. This search (for non-degenerate objective functions) provides a good order of dependence 

of the obtained estimates of labor intensity on 휀 (see [3, 12–14]). And the examples of using the program 
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[19] given in [18] show acceptable efficiency when optimizing not too complex objective functions. A 

trial transition function 𝑃(𝑥, ⋅ ) of such a homogeneous search is close to a mixture with equal 

probabilities of uniform distributions in balls whose radii form a geometric progression. The radii of 

this geometric progression run through the values from the assumed accuracy of the initial 

approximation (the distance from the starting point of the search to the minimum point) to the required 

accuracy of solving the problem when approximating with an argument. Therefore, in the 

inhomogeneous search under study, we will use normal probability distributions, the standard deviations 

of which form a geometric progression. Unlike homogeneous search, in an inhomogeneous search we 

will not use a mixture of distributions, but will use these distributions sequentially. We begin naturally 

with the largest standard deviation, and end with the smallest. 

In addition, since the number of search steps must be large enough, in order not to change standard 

deviations too often, we will break the entire search into stages, and we will change the standard 

deviation only after the next stage is completed. Thus, trial transition functions will be constant for all 

steps of a single stage. 

By virtue of the foregoing, in this section, we choose for realization a inhomogeneous Markov 

monotone random search, the trial transition functions of which are the normal probability distributions. 

The entire search is divided into stages, and the trial transition functions of the search will be constant 

for all the steps of a single stage. We shall change the standard deviations of the normal distributions 

only after the next search stage is completed, and these standard deviations form a geometric 

progression. 

4. Simulation of random search 

In this section, we present an algorithm for modeling a inhomogeneous Markov monotone random 

search chosen for realization. Presented search has only four parameters. The parameters defining the 

range of changes in the standard deviations of normal distributions are the positive numbers 𝜈 and Γ, for 

which the inequalities 0 < 𝜈 ≤ Γ must be satisfied. The third parameter is 𝑁 — the number of search 

steps. The fourth parameter is 𝑚 — the number of steps at the search stage (trial transition functions are 

constant for all steps of one stage). The parameters 𝑚 and 𝑁 are natural numbers satisfying the 

inequalities 1 ≤ 𝑚 ≤ 𝑁. 

Let us calculate two auxiliary parameters. The number of stages of the search is 𝜏 = ⌈𝑁 𝑚⁄ ⌉. The 

standard deviations at the stages of the search form a geometric progression with the denominator of the 

progression 𝑞 ∈ (0,1], where 

𝑞 = {
1, for 𝜏 = 1,

(𝜈 𝛤⁄ )1 (𝜏−1)⁄ , for 𝜏 > 1.
 

Let 𝑁(𝑥, 𝜎, ⋅ )  denote the distribution of a 𝑑-dimensional Gaussian random vector with center at 

𝑥 ∈ ℝ𝑑 and independent components with the same standard deviation 𝜎. 

Now we write down the algorithm for modeling the chosen for the realization of a inhomogeneous 

Markov monotone random search 𝜉0, … , 𝜉𝑁. 

Algorithm 2 

Step 1. 𝜉0 ← 𝑥, 𝑘 ← 1, 𝜎 ← Γ. 

Step 2. 휂𝑘 ← 𝑁(𝜉𝑘−1, 𝜎, ⋅ ). 

Step 3. If 𝑓(휂𝑘) ≤ 𝑓(𝜉𝑘−1), then 𝜉𝑘 ← 휂𝑘, otherwise 𝜉𝑘 ← 𝜉𝑘−1. 

Step 4. If 𝑘 = 𝑁, complete the operation of the algorithm. 

Step 5. If 𝑘 mod 𝑚 = 0, then 𝜎 ← 𝜎 ∗ 𝑞.  

Step 6. 𝑘 ← 𝑘 + 1 and go to step 2. 

Here 𝑥 is the starting point of the search, 𝑘 is the number of the search step, 𝑁 is the number of search 

steps. The standard deviation 𝜎 changes after the completion of the each stage of the search, where 𝑚 

is the number of steps in the search stage, and 𝑘 mod 𝑚 denotes the remainder of 𝑘 divided by 𝑚. 

At the second step of Algorithm 2, we obtain a new “trial” point 휂𝑘 in the optimization space using 

the Gaussian distribution 𝑁(𝜉𝑘−1, 𝜎, ⋅ ). 
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In the third step of algorithm 2, we compare the new trial point 휂𝑘 with the old search point 𝜉𝑘−1. If 

the new trial point 휂𝑘 is not worse than the old search point 𝜉𝑘−1 (that is, if the inequality 𝑓(휂𝑘) ≤
𝑓(𝜉𝑘−1)) holds, then the search goes to the new point 휂𝑘 (the operator 𝜉𝑘 ← 휂𝑘   is executed), otherwise 

the search remains at the old point (the operator 𝜉𝑘 ← 𝜉𝑘−1 is executed). 

In the fourth step of algorithm 2, we check the condition for stopping the search. In this case, the 

search stops after performing a predetermined number of steps 𝑁, i.e. under condition 𝑘 = 𝑁. If the 

search continues (that is, if 𝑘 < 𝑁), then at the fifth and sixth steps of algorithm 2 we recalculate the 

values of the search parameters, and we return to the second step of algorithm 2. 

To simulate a 𝑑-dimensional Gaussian random vector in the second step of algorithm 2, we simulate 

𝑑 independent normal random variables with zero mean and standard deviation 𝜎. These random 

variables are added to the coordinates of the current search point 𝜉𝑘−1 to get a new trial point 휂𝑘   in the 

optimization space. 

To simulate normal random variables, we use the modified polar method. The modified polar method 

is designed to simulate two independent standard normal random variables 휁1 and 휁2. Let 𝛼1 and 𝛼2 be 

independent uniformly distributed variables on the interval [0, 1]. 
Standard Normal Distribution Modeling Algorithm 

Step 1. Get 𝛼1 and 𝛼2. 𝛽1 ← 2𝛼1 − 1, 𝛽2 ← 2𝛼2 − 1, 𝛿 ← 𝛽1
2 + 𝛽2

2. 

Step 2. If 𝛿 > 1, then proceed to step 1. 

Step 3. 𝑡 ← √−2 ln(𝛿) 𝛿⁄ , 휁1 ← 𝛽1𝑡, 휁2 ← 𝛽2𝑡.  
Since the simulation algorithms are quite simple, the random search simulation algorithm is generally 

fairly easy to program. The simulation algorithm presented is a bit more complicated than the random 

search simulation algorithm [18] and the simplest random search simulation algorithm (the so-called 

“blind search” [3, 5]) which uses a uniform distribution in a pre-fixed area of optimization space. 

5. Program Description 

The program is written in C# in the Microsoft Visual Studio Professional 2010 integrated development 

environment. The program has a graphical user interface written using Windows Forms. You can 

download the program at www.novsu.ru/doc/study/tas1 from the “Random_search” folder. The program 

is also available as an executable file and as a project containing the source code of the program and 

allowing the user to edit the program at his discretion. 

To run the executable file of the program requires the Microsoft.NET Framework 4. Usually it is 

already installed on the computer, but if necessary it can be downloaded from the Microsoft website. To 

edit the project you need to install the development environment Microsoft Visual Studio. This 

development environment can be used for free, and, therefore, this development environment can serve 

as a convenient tool for scientific calculations. 

For calculations, the program uses the numeric type of double, ensuring accuracy of 15–16 

characters. Note that this number format limits the possible accuracy of solving the problem. Arguing 

somewhat simplistic, we get the following conclusions. If the objective function behaves approximately 

as a quadratic function in the neighborhood of the global minimum, then with an accuracy of 

approximation with an argument of the order of 10−8 we obtain an accuracy of approximation with a 

value of the function of about 10−16. If the minimum value of the objective function belongs to the 

interval (1, 10), then the numeric type double, providing accuracy of 15–16 characters, will not allow 

the function value to be calculated with an accuracy higher than 10−16. Thus, the typical accuracy of 

the solution of the problem will be about 10−7 for the approximation of the argument, and about 10−14 

for the approximation of the value of the function. Such accuracy is usually sufficient from a practical 

point of view. And such accuracy of the solution of the problem can be obtained by using the random 

search program in question when solving not too complicated optimization problems. Of course, if the 

minimum value of the objective function is zero, and the minimum point is also zero, then the problem 

can be solved with much higher accuracy. 
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To apply the search, you must specify the objective function, search parameters and the starting point 

of the search. The search results will be the end point of the search (approximating the global minimum 

point) and the value of the objective function at the end point of the search. 

Search parameters and the starting point of the search are easy to set in the main program window. 

It is more difficult to set the objective function. The objective function can be defined in two ways. 

First, you can write the function code directly in the program code (in C#). This method is described in 

more detail in [18]. When writing code that calculates the value of an objective function, as a rule, only 

minimal information about a programming language such as C, C++, C#, Java is sufficient. 

Secondly, the target function can be set in the search program itself (without using Microsoft Visual 

Studio). To do this, click the “Set Formula” button in the program, select the “Use Formula” item in the 

dialog box that opens, specify the dimension of the optimization space and write the formula defining 

the objective function. The method of specifying the objective function is shown in the text box with 

the words “Use the function code” or “Use the formula”. 

The dimension of the optimization space is specified when defining the function. 

In the program, you can set the output formats for the value of the objective function and the 

coordinates of points (see [18]). 

You can write comments to the problem being solved. Comments are written in text format and saved 

in a file along with parameters and search results. 

To perform a search, the program uses a pseudo-random number generator. It can be initialized with 

either a value depending on the computer system time or a specified value. 

The program can save data in XML format, and export key search characteristics in text format. 

When you set the value of the parameter “Number of search steps 𝑁” to zero, the program will 

calculate the value of the function at the starting point of the search. This can be used to calculate the 

value of the objective function at a given point. 

Note that the use of the old Microsoft Visual Studio 2010 development environment when writing a 

program allows you to work with the project even for users of computers running the Windows XP 

operating system. 

6. The choice of search parameters 

It is important to note that the choice of search parameters can have a major impact on the effectiveness 

of the random search method [3, 5, 7]. At the same time, many search algorithms contain a large number 

of heuristic parameters, and it is very difficult for the user of such an algorithm to find “good” parameter 

values that fit the function being optimized. Let us quote from [7], referring to the method of very fast 

annealing proposed by L. Ingber: “Among the drawbacks of this method is the fact that due to a large 

number of parameters it sometimes takes several months to properly configure it to solve a specific 

problem.” Moreover, with proper selection of parameters, the method of very fast annealing can show 

good results [6, 7]. 

Presented search has only four parameters. The parameters defining the range of changes in the 

standard deviations of normal distributions are the positive numbers 𝜈 and Γ, for which the inequalities 

0 < 𝜈 ≤ Γ must be satisfied. The third parameter is 𝑁 – the number of search steps. The fourth parameter 

is 𝑚 – the number of steps at the search stage (trial transition functions are constant for all steps of a 

single stage). 

The value of 𝜈 can be chosen close to the required accuracy of the solution of the problem in the 

approximation of the argument. The value of Γ can be chosen close to either the expected accuracy of 

the initial approximation (the distance from the starting point of the search to the minimum point) or the 

diameter of the area under study in the optimization space. When choosing Γ, we can use the upper 

bound. 

The number of search steps 𝑁 is desirable to take quite large. When solving a single problem, you 

can, for example, perform a billion search steps, even if the task is simple enough and it can be solved 

much faster. Modern personal computers can easily perform similar volumes of calculations, at least for 
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not too complex objective functions. However, for such volumes of calculations, the code of the 

objective function must be set programmatically in the C# programming language. 

The parameter 𝑚 (number of steps at the search stage) can be set so that it is not necessary to change 

the standard deviations of normal distributions too often. In the numerical examples in the next section, 

we used the values 𝑚 = 10 and 𝑚 = 100. 

In addition to the four search options, you need to select the starting point of the search. It is clear 

that the starting point is better located closer to the point of global extremum. 

The proposed search algorithm is largely free from the insurmountable difficulties of choosing 

parameters. In particular, in the numerical examples of the next section, a minimal selection of 

parameters was carried out, consisting literally of several attempts to launch a program with different 

values of parameters. 

7. Examples of the use of the program 

Let us give some examples of using the presented program for solving optimization problems. For 

calculations, a personal computer with an Intel Core i5-4460S processor was used. 

7.1. Example 1 

Let us use the example from [5]. Here is the optimization space 𝑋 = ℝ2, 𝑥 = (𝑥1, 𝑥2),  

𝑓(𝑥) = 𝑓(𝑥1, 𝑥2) = 𝑥1
4 + 𝑥1

2 + 𝑥1𝑥2 + 𝑥2
2. 

The function 𝑓 takes the minimum value at a single point 𝑥∗ = (0, 0) and 𝑓(𝑥∗) = 0. The starting point 

of the search is 𝑥 = (1, 1) and 𝑓(𝑥) = 4. The number of search steps 𝑁 here takes the value 104.  

Algorithm B of the book [5] gets the minimum value of the objective function 2.7 × 10−6. Algorithm 

B corresponds to the search for algorithm 1 using the normal probability distribution as a transition 

function. 

Algorithm C of the book [5] gets the minimum value of the objective function 2.5 × 10−7. Algorithm 

C also uses the normal probability distribution as a transition function, but represents a more complex 

search variant, in which the movement made in the previous step of the algorithm is taken into account 

when constructing a new search point. 

Algorithm 1 of homogeneous search [18] gets the minimum value of the objective function 

9.9 × 10−49. 

Algorithm 2 in this paper with the parameters 𝜈 = 10−165,  Γ = 1  and  𝑚 = 10 gets the minimum 

value of the objective function equal to zero (i.e., less than the value 5 × 10−324, which determines the 

range of values of type double C# programming language) and the minimum point (8.5 × 10−163, 4.4 ×
10−163). Note that in this case, the maximum accuracy is achieved with which you can perform 

calculations on C# using the double number format (because that it is impossible to more accurately 

calculate the value of the objective function). 

Algorithm 1 of homogeneous search [18] to obtain the zero value of the objective function was 

required to perform 106 steps. 

In this example, the search for algorithm 2 turned out to be much more accurate than the algorithms 

B and C of the book [5] and algorithm 1 of the article [18]. 

7.2. Example 2 

Here is the optimization space 𝑋 = [−8, 8]2, 𝑥 = (𝑥1, 𝑥2), 

𝑓(𝑥) = 𝑓(𝑥1, 𝑥2) =
1

2
((𝑥1

4 − 16𝑥1
2 + 5𝑥1) + (𝑥2

4 − 16𝑥2
2 + 5𝑥2)). 

The function 𝑓 has four local minima, one of which is global. The starting point of the search is 𝑥 =
(4.0, 6.4) and 𝑓(𝑥) = 537.18. The search for algorithm 2 with the parameters 𝜈 = 10−8, Γ = 10, 𝑚 =
10 and 𝑁 = 20000 finds the minimum value of the objective function −78.3323314075428 and the 

minimum point (−2.903534, −2.903534). Note that the maximum accuracy has been reached here, 
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with which you can perform calculations on C# using the double number format (because it is impossible 

to calculate the value of the objective function more accurately). 

The results obtained are close to the results of a homogeneous search article [18]. 

7.3. Example 3 

Here the space 𝑋 = [−4, 4]10, 𝑥 = (𝑥1, 𝑥2, … , 𝑥10),  

𝑓(𝑥) = 𝑓(𝑥1, 𝑥2, … , 𝑥10) = ∑(100(𝑥2𝑛 − 𝑥2𝑛−1
2 )2 + (1 − 𝑥2𝑛−1)2)

5

𝑛=1

. 

The f function is the well-known Rosenbrock test function used for local optimization methods. The 

function 𝑓 takes the minimum value 𝑓(𝑥∗) = 0 at the point 𝑥∗ = (1, 1, … , 1). The starting point of the 

search is 𝑥 = (−1.2, 1, −1.2, 1, … , 1) and 𝑓(𝑥) = 121. The search for algorithm 2 with the parameters 

𝜈 = 10−16,  Γ = 4, 𝑚 = 100 and 𝑁 = 107 finds the minimum value of the objective function 

3.1 × 10−29. The search execution time was 3.3 seconds. 

The results obtained are close to the results of a homogeneous search article [18]. But there the search 

execution time was 1.8 seconds. The normal probability distribution used in the search under study is 

somewhat more difficult to model than the uniform distributions in 𝑑-dimensional cubes used in [18]. 

7.4. Example 4 

Let us consider an example with a very simple objective function, but in an optimization space of very 

large dimensionality for random search methods. Here, the space 𝑋 = ℝ1000, 𝑥 = (𝑥1, 𝑥2, … , 𝑥1000), 

𝑓(𝑥) = ∑ 𝑥𝑛
21000

𝑛=1 . The function 𝑓 takes the minimum value of 𝑓(𝑥∗) = 0 at the single point. The starting 

point of the search is 𝑥 = (1, 1, … , 1). The search for algorithm 2 with the parameters 𝜈 = 10−84,  Γ =
1, 𝑚 = 100 and 𝑁 = 106 finds the minimum value of the objective function 3.7 × 10−163. The search 

execution time was 30 seconds. 

Homogeneous search of the article [18] with 𝑁 = 106  received the minimum value of the objective 

function 1.6 × 10−14. The search execution time was 13 seconds. In this example, the search for 

algorithm 2 turned out to be much more precise than the search for algorithm 1 of article [18]. 

8. Conclusion 

The results show that the presented algorithm of inhomogeneous search, based on the use of the normal 

probability distribution, is quite effective. The presented random search program can be successfully 

used for solving optimization problems. The program itself is easy to use, and the choice of search 

parameters is not a difficult task. At the same time, the program allows you to solve problems with the 

utmost precision that can be obtained using the double number format of the C# programming language. 
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