About the k-error linear complexity over \mathbb{F}_{p} of sequences of length $2 p$ with optimal three-level autocorrelation

To cite this article: V A Edemskiy 2019 J. Phys.: Conf. Ser. 1352012011

View the article online for updates and enhancements

You may also like

Natural bone inspired core-shell triplelayered gel/PCL/gel 3D printed scaffolds for bone tissue engineering Deepak Gupta, Atul Kumar Singh and Jayesh Bellare

Emerging intrinsic magnetism in twodimensional materials: theory and applications
Songrui Wei, Xiaoqi Liao, Cong Wang et al.

Equivalence of effects for a limiting stress state
Elephan Agakhanov and Murad Agakhanov

About the k-error linear complexity over \mathbb{F}_{p} of sequences of length 2p with optimal three-level autocorrelation

V A Edemskiy
Yaroslav-the-Wise Novgorod State University, ul. B. St. Petersburgskaya, 41 173003, Veliky Novgorod, Russia
E-mail: Vladimir.Edemsky@novsu.ru

Abstract

We investigate the k-error linear complexity over \mathbb{F}_{p} of binary sequences of length $2 p$ with optimal three-level autocorrelation. These balanced sequences are constructed from cyclotomic classes of order four using a method presented by Ding et al.

1. Introduction

Autocorrelation is an important measure of pseudo-random sequence for their application in codedivision multiple access systems, spread spectrum communication systems, radar systems and so on [1]. An important problem in sequence design is to find sequences with optimal autocorrelation. In their paper, Ding et al. [2] gave several new families of binary sequences of period $2 p$ with optimal autocorrelation $\{-2.2\}$.

The linear complexity is another important characteristic of pseudo-random sequence, which is significant for cryptographic applications. It is defined as the length of the shortest linear feedback shift register that can generate the sequence [3]. The linear complexity of above-mention sequences over the finite field of order two was investigated in [4] and in [5] over the finite field \mathbb{F}_{p} of p elements and other finite fields. However, high linear complexity can not guarantee that the sequence is secure. For example, if changing one or few terms of a sequence can greatly reduce its linear complexity, then the resulting key stream would be cryptographically weak. Ding et al. [6] noticed this problem first in their book, and proposed the weight complexity and the sphere complexity. Stamp and Martin [7] introduced the k-error linear complexity, which is the minimum of the linear complexity and sphere complexity. The k-error linear complexity of a sequence r is defined by $L_{k}(r)=\min _{t} L(t)$, where the minimum of the linear complexity $L(t)$ is taken over all N-periodic sequences $t=\left(t_{n}\right)$ over \mathbb{F}_{p} for which the Hamming distance of the vectors $\left(r_{0}, r_{1}, \ldots, r_{N-1}\right)$ and $\left(t_{0}, t_{1}, \ldots, t_{N-1}\right)$ is at most k. Complexity measures for sequences over finite fields, such as the linear complexity and the k-error linear complexity, play an important role in cryptology. Sequences that are suitable as keystreams should possess not only a large linear complexity but also the change of a few terms must not cause a significant decrease of the linear complexity.

In this paper we derive the k-error linear complexity of binary sequences of length $2 p$ from [2] over \mathbb{F}_{p}. These balanced sequences with optimal three-level autocorrelation are constructed by cyclotomic classes of order four. Earlier, the linear complexity and the k-error linear complexity over \mathbb{F}_{p} of the Legendre sequences and series of other cyclotomic sequences of length p were investigated in [8, 9].

2. Preliminaries

First, we briefly repeat the basic definitions from [2] and the general information.
Let p be a prime of the form $p \equiv 1(\bmod 4)$, and let θ be a primitive root modulo p [10]. By definition, put $D_{0}=\left\{\theta^{4 s} \bmod p ; s=1, \ldots,(p-1) / 4\right\}$ and $D_{n}=\theta^{n} D_{0}, n=1,2,3$. Then these D_{n} are cyclotomic classes of order four [10].

The ring of residue classes $\mathbb{Z}_{2 p} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{p}$ under the isomorphism $\phi(a)=(a \bmod 2, a \bmod p)$ [11]. Ding et al. considered balanced binary sequences defined as

$$
u_{i}=\left\{\begin{array}{l}
1, \text { if } i \bmod 2 p \in C, \tag{1}\\
0, \text { if } i \bmod 2 p \notin C,
\end{array}\right.
$$

for $C=\phi^{-1}\left(\{0\} \times\left(\{0\} \cup D_{m} \cup D_{j}\right) \cup\{1\} \times\left(D_{l} \cup D_{j}\right)\right)$ where m, j, and l are pairwise distinct integers between 0 and 3 [2]. Here we regard them as sequences over the finite field \mathbb{F}_{p}.

By [2], if $\left\{u_{i}\right\}$ has an optimal autocorrelation value then $p \equiv 5(\bmod 8)$ and $p=1+4 y^{2},(m, j, l)=$ $(0,1,2),(0,3,2),(1,0,3),(1,2,3)$ or $p=x^{2}+4, y=-1,(m, j, l)=(0,1,3),(0,2,3),(1,2,0),(1,3,0)$. Here x, y are integers and $x \equiv 1(\bmod 4)$.

It is well known [12] that if r is a binary sequence with period N, then the linear complexity $L(r)$ of this sequence is defined by

$$
L(r)=N-\operatorname{deg}\left(\operatorname{gcd}\left(x^{N}-1, S_{r}(x)\right)\right)
$$

where $S_{r}(x)=r_{0}+r_{1} x+\ldots+r_{N-1} x^{N-1}$. Let's assume we investigate the linear complexity of u over \mathbb{F}_{p} and with a period $2 p$. So,

$$
L(u)=2 p-\operatorname{deg}\left(\operatorname{gcd}\left(\left(x^{2}-1\right)^{p}, S_{u}(x)\right)\right) .
$$

The weight of $f(x)$, denoted as $w(f)$, is defined as the number of nonzero coefficients of $f(x)$. From our definitions it follows that if the Hamming distance of the vectors $\left(u_{0}, u_{1}, \ldots, u_{2 p-1}\right)$ and $\left(t_{0}, t_{1}, \ldots, t_{2 p-1}\right)$ is at most k then there exists $f(x) \in \mathbb{F}_{p}, w(f) \leq k$ such that $S_{t}(x)=S_{u}(x)+f(x)$ and the reverse is also true. Therefore

$$
\begin{equation*}
L_{k}(u)=2 p-\max _{f(x)}\left(m_{0}+m_{1}\right) \tag{2}
\end{equation*}
$$

where $0 \leq m_{j} \leq p, S_{u}(x)+f(x) \equiv 0\left(\bmod (x-1)^{m_{0}}(x+1)^{m_{1}}\right)$ and $f(x) \in \mathbb{F}_{p}[x], w(f) \leq k$.
Let g be an odd number in the pair $\theta, \theta+p$, then g is a primitive root modulo $2 p$ [11]. By definition, put $H_{0}=\left\{g^{4 s} \bmod 2 p ; s=1, \ldots,(p-1) / 4\right\}$. Denote by H_{n} a set $g^{n} H_{0}, n=1,2,3$. Let us introduce the auxiliary polynomial $S_{n}(x)=\sum_{i \in H_{n}} x^{i}$. The following formula was proved in [5].

$$
\begin{equation*}
S_{u}(x) \equiv\left(x^{p}+1\right) S_{j}(x)+x^{p} S_{m}(x)+S_{l}(x)+1\left(\bmod \left(x^{2 p}-1\right)\right) . \tag{3}
\end{equation*}
$$

By (3) we have

$$
\left\{\begin{array}{c}
S_{u}(x) \equiv 2 S_{j}(x)+S_{m}(x)+S_{l}(x)+1\left(\bmod (x-1)^{p}\right) \tag{4}\\
S_{u}(x) \equiv S_{l}(x)-S_{m}(x)+1\left(\bmod (x+1)^{p}\right)
\end{array}\right.
$$

Let the sequences $\left\{q_{i}\right\}$ and $\left\{v_{i}\right\}$ be defined by

$$
q_{i}=\left\{\begin{array}{l}
2, \text { if } i \bmod p \in D_{j}, \tag{5}\\
1, \text { if } i \bmod p \in\{0\} \cup D_{m} \cup D_{l}, \text { and } v_{i}=\left\{\begin{array}{l}
2, \text { if } i \bmod p \in\{0\} \cup D_{m} \\
0, \text { otherwise },
\end{array}, \begin{array}{l}
\text { if } i \bmod p \in D_{l}, \\
0, \text { otherwise }
\end{array}\right.
\end{array}\right.
$$

By definition, put $S_{q}(x)=\sum_{i=0}^{p-1} q_{i} x^{i}$ and $S_{v}(x)=\sum_{i=0}^{p-1} v_{i} x^{i}$. Then by the choice of g we obtain that

$$
\left\{\begin{array}{c}
2 S_{j}(x)+S_{m}(x)+S_{l}(x)+1 \equiv S_{q}(x)\left(\bmod (x-1)^{p}\right) \tag{6}\\
S_{m}(x)-S_{l}(x)+1 \equiv S_{v}(x)\left(\bmod (x-1)^{p}\right)
\end{array}\right.
$$

As noted above, the k-error linear complexity of cyclotomic sequences was investigated in [9]. With the aid of methods from [9] it is an easy matter to prove the following

$$
L_{k}(q)=\left\{\begin{array}{l}
\frac{3(p-1)}{4}+1, \text { if } 0 \leq k \leq \frac{p-1}{4} \tag{7}\\
\frac{(p-1)}{2}+1, \text { if } \frac{p-1}{4}+1 \leq k<\frac{p-1}{3} \\
1, \\
\text { if } k=\frac{p-1}{2}
\end{array}\right.
$$

and $(p-1) / 4+1 \leq L_{k}(q) \leq(p-1) / 2+1$ if $(p-1) / 3 \leq k<(p-1) / 2$.

$$
L_{k}(v)= \begin{cases}p, & \text { if } k=0, \tag{8}\\ \frac{3(p-1)}{4}+1, & \text { if } 1 \leq k<\frac{p-1}{4}, \\ \frac{p-1}{2}+1, & \text { if } \frac{(p-1)}{4}+1 \leq k<\frac{p-1}{3}, \\ 0, & \text { if } k \geq \frac{p-1}{2}+1 .\end{cases}
$$

and $9(p-1) / 16 \leq L_{(p-1) / 4}(v) \leq 3(p-1) / 4+1,(p-1) / 4 \leq L_{k}(v) \leq(p-1) / 2$ if $(p-1) / 3 \leq$ $k<(p-1) / 2$.

The following statements we also obtain by [9] or by Lemma 3 from [5].
Lemma 1.

1. $S_{n}(x)=-1 / 4+(x-1)^{(p-1) / 4} E_{n}(x)$ and $E_{n}(1) \neq 0, n=0,1,2,3$;
2. $S_{n}(x)=-1 / 4+(x+1)^{(p-1) / 4} F_{n}(x)$ and $F_{n}(-1) \neq 0, n=0,1,2,3$;
3. Let $S_{l}(x)+S_{m}(x)+g(x) \equiv 0\left(\bmod (x-1)^{(p-1) / 4+1}\right)$ and $|l-m| \neq 2$. Then $w(g(x)) \geq$ $(p-1) / 4$.

Let us introduce the auxiliary polynomial $R(x)=\sum_{i=0}^{4} c_{i} S_{i}(x), c_{i} \in \mathbb{Z}$. Denote a formal derivative of order n of the polynomial $R(x)$ by $R^{(n)}(x)$.

Lemma 2. Let $\left.R^{(n)}(x)\right|_{x= \pm 1}=0$ if $0 \leq n \leq(p-1) / 4$. Then $\left.R^{(n)}(x)\right|_{x= \pm 1}=0$ for $(p-1) / 4+$ $1<n<(p-1) / 2$.

Proof. We consider the sequences $\left\{r_{t}\right\}$ of length p defined by

$$
r_{t}=\left\{\begin{array}{l}
0, \text { if } t=0, \\
c_{i}, \text { if } t \in D_{i} .
\end{array}\right.
$$

By the definition of the sequence, $S_{r}(x) \equiv R(x)\left(\bmod \left(x^{p}-1\right)\right)$, so that by the condition of this lemma $L(r)<3(p-1) / 4$. By Theorem 1 from [9] for the cyclotomic sequences $L(r)=p-c(p-$ 1) $/ 4,1 \leq c \leq 3$. Hence, $L(r) \leq p-(p-1) / 2$. This completes the proof of Lemma 2.

This lemma can also be proved using Lemma 2 and 3 from [5].
3. The exact values of the \boldsymbol{k}-error linear complexity of \boldsymbol{u} for $\mathbf{1} \leq \boldsymbol{k}<(\boldsymbol{p}-\mathbf{1}) / \mathbf{4}$

In this section we obtain the upper and lower bounds of the k-error linear complexity and determine the exact values for the k-error linear complexity $L_{k}(u), 1 \leq k<(p-1) / 4$.

First of all, we consider the case $k=1$. Our first contribution in this paper is the following.
Lemma 3. Let $\left\{u_{i}\right\}$ be defined by (1) for $p>5$. Then $L_{1}(u)=(7 p+1) / 4$.
Proof. Since $L_{1}(u) \leq L(u)$ and $L(u)=(7 p+1) / 4$ [5], it follows that $L_{1}(u) \leq(7 p+1) / 4$. Assume that $L_{1}(u)<L(u)$. Then there exists $f(x)=a x^{b}, a \neq 0$ such that $S_{u}(x)+a x^{b} \equiv 0(\bmod (x-$ 1) $\left.{ }^{m_{0}}(x+1)^{m_{1}}\right)$ for $m_{0}+m_{1}>(p-1) / 4$. By (4) the last comparison is impossible for $p \neq 5$.

If $p=5$ then $L_{1}(u)=8$.
Lemma 4. Let $\left\{u_{i}\right\},\left\{q_{i}\right\},\left\{v_{i}\right\}$ be defined by (1) and (5), respectively. Then $L_{k}(q)+L_{k}(v) \leq L_{k}(u)$.
Proof. Suppose $S_{u}(x)+f(x) \equiv 0\left(\bmod (x-1)^{m_{0}}(x+1)^{m_{1}}\right), w(f) \leq k$ and $m_{0}+m_{1}=2 p-$ $L_{k}(u)$. Combining this with (4) and (6) we get $S_{q}(x)+f(x) \equiv 0\left(\bmod (x-1)^{m_{0}}\right)$ and $S_{l}(x)-$ $S_{m}(x)+1+f(x) \equiv 0\left(\bmod (x+1)^{m_{1}}\right)$ or $S_{m}(x)-S_{l}(x)+1+f(-x) \equiv 0\left(\bmod (x-1)^{m_{1}}\right)$ Hence $m_{0} \leq p-L_{k}(q)$ and $m_{1} \leq p-L_{k}(v)$. This completes the proof of Lemma 4.

Lemma 5. Let $\left\{u_{i}\right\}$ be defined by (1) and $k \geq 2$. Then $L_{k}(u) \leq 3(p-1) / 4+1+L_{k-2}(q)$.
Proof. From our definition it follows that there exists $h(x)$ such that

$$
S_{q}(x)+h(x) \equiv 0\left(\bmod (x-1)^{p-L_{k-2}(q)}\right), w(h) \leq k-2 .
$$

Then, by Lemma $1 h(x) \equiv 0\left(\bmod (x-1)^{(p-1) / 4}\right)$. Let $h(x)=\sum h_{i} x^{a_{i}}$. We consider $f(x)=\sum f_{i} x^{b_{i}}$ where

$$
b_{i}=\left\{\begin{array}{cc}
a_{i}, & \text { if } a_{i} \text { is an even } \\
a_{i}+p, & \text { if } a_{i} \text { is an odd }
\end{array}\right.
$$

By definition $f(x) \equiv h(x)\left(\bmod (x-1)^{p}\right)$, hence $S_{q}(x)+f(x) \equiv 0\left(\bmod (x-1)^{p-L_{k-2}(q)}\right)$. Further, since $h(x) \equiv 0\left(\bmod (x-1)^{(p-1) / 4}\right)$ and $f(x)=f(-x)$, it follows that

$$
f(x) \equiv 0\left(\bmod (x+1)^{(p-1) / 4}\right)
$$

Using (3), we obtain that

$$
S_{u}(x)+\left(x^{p}-1\right) / 2+f(x) \equiv\left(x^{p}-1\right)\left(S_{j}(x)+S_{m}(x)+1 / 2\right)+S_{q}(x)+f(x)\left(\bmod \left(x^{2}-1\right)^{p}\right)
$$

From this by Lemma 1 we can establish that

$$
S_{u}(x)+\left(x^{p}-1\right) / 2+f(x) \equiv 0\left(\bmod (x-1)^{p-L_{k-2}(q)}(x+1)^{(p-1) / 4}\right)
$$

The conclusion of this lemma then follows from (2).
Theorem 1. Let $\left\{u_{i}\right\}$ be defined by (1) and $2 \leq k<(p-1) / 4$. Then $L_{k}(u)=3(p-1) / 2+2$.
Proof. By Lemmas 3 and 4 it follows that $L_{k}(v)+L_{k}(q) \leq L_{k}(u) \leq 3(p-1) / 4+1+L_{k-2}(q)$. To conclude the proof, it remains to note that $L_{k}(v)=L_{k}(q)=L_{k-2}(q)=3(p-1) / 4+1$ for $2 \leq$ $k<(p-1) / 4$ by (7), (8).

4. The estimates of \boldsymbol{k}-error linear complexity

In this section we determine the exact values of the k-error linear complexity of u for $(p-1) / 4+2 \leq$ $k<(p-1) / 3$ and we obtain the estimates for the other values of k. Farther, we consider two cases.
$\operatorname{Let}(m, j, l)=(0,1,3),(0,2,3),(1,2,0),(1,3,0)$
Lemma 6. Let $\left\{u_{i}\right\}$ be defined by (1). Then $21(p-1) / 16+1 \leq L_{(p-1) / 4}(u) \leq 3(p-1) / 2+2$ and $p+1 \leq L_{(p-1) / 4+1}(u) \leq 3(p-1) / 2+2$ for $p>5$.

The statement of this lemma follows from Lemmas 4, 5 and (7), (8).
Theorem 2. Let $\left\{u_{i}\right\}$ be defined by (1) for $(m, j, l)=(0,1,3),(0,2,3),(1,2,0),(1,3,0)$ and $(p-$ 1) $/ 4+2 \leq k<(p-1) / 3$. Then $L_{k}(u)=p+1$.

Proof. We consider the case when $(m, j, l)=(0,1,3)$. Let $f(x)=x^{p} / 2-(\rho+3) / 4-(\rho+$ 1) $x^{p} S_{0}(x)$ where $\rho=\theta^{(p-1) / 4}$ is a primitive 4 -th root of unity modulo p. Then $w(f)=2+(p-1) / 4$. Denote $S_{u}(x)+f(x)$ by $h(x)$. Under the conditions of this theorem we have

$$
h(x)=\left(x^{p}+1\right) S_{1}(x)+x^{p} S_{0}(x)+S_{3}(x)+1+\frac{x^{p}}{2}-\frac{\rho+3}{4}-(\rho+1) x^{p} S_{0}(x)
$$

Hence $h(1)=0$. Let $h^{(n)}(x)$ be a formal derivative of order n of the polynomial $h(x)$. By Lemmas 2 and 3 from [5] we have that $h^{(n)}(1)=0$ if $1 \leq n<(p-1) / 4$ and by Lemma 3 from [5] $h^{(p-1) / 4}(1)=$ $\left(2 \rho+1+\rho^{3}-(\rho+1)\right)(p-1) / 4=0$. Hence, by Lemma $2 h^{(n)}(1)=0$ if $(p-1) / 4<n<(p-$ 1)/2 and $h(x) \equiv 0\left(\bmod (x-1)^{(p-1) / 2}\right)$.

Further, $h(-1)=-1 / 4+1 / 4+1-1 / 2-(\rho+3) / 4+(\rho+1) / 4=0 \quad$ and $\quad h^{(p-1) / 4}(-1)=$ $\left(-1+\rho^{3}+(\rho+1)\right)(p-1) / 4=0$. So, by Lemma $2 h^{(n)}(1)=0$ if $1<n<(p-1) / 2$ and $h(x) \equiv$ $0\left(\bmod (x+1)^{(p-1) / 2}\right)$. Therefore, by (2) we see that $L_{(p-1) / 4+2} \leq p+1$. On the other hand, by Lemma $4 L_{k}(u) \geq L_{k}(v)+L_{k}(q)$. To conclude the proof, it remains to note that $L_{k}(v)+L_{k}(q)=p+1$ for $(p-1) / 4+2<k<(p-1) / 3$ by (7), (8). The other cases may be considered similarly. Theorem 2 is proved.

Farther, if $(p-1) / 3 \leq k<(p-1) / 2$ then by Lemma 4, Theorem 2 and (7), (8) we have that ($p-$ 1) $/ 2+1 \leq L_{k}(u) \leq p+1$. It is simple to prove that $L_{(p-1) / 2+2}(u) \leq(p-1) / 2+2$.

Let $(m, j, l)=(0,1,2),(0,3,2),(1,0,3),(1,2,3)$. Similarly as in subsection 4.1 , we have that $21(p-$ 1) $/ 16+1 \leq L_{(p-1) / 4}(u) \leq 3(p-1) / 2+2$.

Theorem 3. Let $\left\{u_{i}\right\}$ be defined by (1) for $(m, j, l)=(0,1,2),(0,3,2),(1,0,3),(1,2,3)$ and $(p-$ 1) $/ 4+1 \leq k<(p-1) / 3$ then $L_{k}(u)=5(p-1) / 4+2$.

Proof. We consider the case when $(m, j, l)=(0,1,2)$. Let here $f(x)=-1 / 2-2 S_{2}(x)$ and $h(x)=$ $S_{u}(x)+f(x)$. Since $(m, j, l)=(0,1,2)$ it follows that

$$
h(x)=\left(x^{p}+1\right) S_{1}(x)+x^{p} S_{0}(x)+S_{2}(x)+1-1 / 2-2 S_{2}(x) .
$$

Hence $h(1)=0$. By Lemma 2 from [5] we have that $h^{(n)}(1)=0$ if $1 \leq n<(p-1) / 4$. Hence $h(x) \equiv 0\left(\bmod (x-1)^{(p-1) / 4}\right)$.

Further, $h(-1)=0$ and $h^{(p-1) / 4}(-1)=\left(-1+\rho^{2}-2 \rho^{2}\right)(p-1) / 4=0$. So, $h^{(n)}(-1)=0$ if $1<n<(p-1) / 2$ and $h(x) \equiv 0\left(\bmod (x+1)^{(p-1) / 2}\right)$. Therefore, by (2) we see that $L_{(p-1) / 4+2} \leq$ $2 p-3(p-1) / 4$.

Suppose $L_{(p-1) / 4+2}<2 p-3(p-1) / 4$; then by (2) there exist m_{0}, m_{1} such that $m_{0}+m_{1}>3(p-$ 1) $/ 4$ and $S_{u}(x)+f(x) \equiv 0\left(\bmod (x-1)^{m_{0}}(x+1)^{m_{1}}\right), w(f) \leq k<(p-1) / 3$.

We consider two cases.
(i) Let $m_{0} \leq(p-1) / 4$ or $m_{1} \leq(p-1) / 4$. Then $m_{1}>(p-1) / 2$ or $m_{0}>(p-1) / 2$ and by (4) and (6) we obtain $L_{k}(q)<(p+1) / 2$ or $L_{k}(v)<(p+1) / 2$. This is impossible for $k<(p-1) / 3$ by (7) or (8).
(ii) Let $\min \left(m_{0}, m_{1}\right)>(p-1) / 4$. We can write that $f(x)=f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right)$. Therefore, since $2 S_{1}(x)+S_{0}(x)+S_{2}(x)+1+f(x) \equiv 0\left(\bmod (x-1)^{m_{0}}\right) \quad$ and $\quad S_{2}(x)-S_{0}(x)+1+f(x) \equiv$ $0\left(\bmod (x+1)^{m_{1}}\right)$ or $-S_{2}(x)+S_{0}(x)+1+f_{0}\left(x^{2}\right)-x f_{1}\left(x^{2}\right) \equiv 0\left(\bmod (x-1)^{m_{1}}\right)$ we see that $S_{1}(x)+S_{0}(x)+1+f_{0}\left(x^{2}\right) \equiv 0\left(\bmod (x-1)^{\min \left(m_{0}, m_{1}\right)}\right)$. Hence, $w\left(f_{0}\right) \geq(p-1) / 4$ by Lemma 1 .

Similarly, $\left.-2 S_{1}(x)-S_{0}(x)-S_{2}(x)+1+f_{0}\left(x^{2}\right)-x f_{1}\left(x^{2}\right) \equiv 0\left(\bmod (x+1)^{m_{1}}\right)\right)$ and $S_{2}(x)-$ $S_{0}(x)+1+f_{0}\left(x^{2}\right)+x f_{1}\left(x^{2}\right) \equiv 0\left(\bmod (x+1)^{m_{1}}\right)$ so $S_{1}(x)+S_{2}(x)+1+x f_{1}\left(x^{2}\right) \equiv 0(\bmod (x-$ 1) $\left.{ }^{\min \left(m_{0}, m_{1}\right)}\right)$. Hence, $w\left(f_{1}\right) \geq(p-1) / 4$ by Lemma 1. This contradicts the fact that $w(f)<(p-$ 1)/3.

Similarly, if $(p-1) / 3 \leq k<(p-1) / 2$ then by Lemma 4, Theorem 2 and (7), (8) we have that $(p-1) / 2+1 \leq L_{k}(u) \leq 2 p-3(p-1) / 4$. Here $L_{(p-1) / 2+2}(u) \leq 3(p-1) / 4+2$.

In the conclusion of this section note that we can improve the estimate of Lemma 5 for $k \geq(p-$ 1) $/ 2+1$. With similar arguments as above we obtain the following results for u.

Lemma 7. Let $\left\{u_{i}\right\}$ be defined by (1) and $k=(p-1) / 2+f, f \geq 0$. Then $L_{k}(u) \leq L_{[f / 2]}(v)+1$ where $[f / 2]$ is the integral part of number $f / 2$.

5. Conclusion

We investigated the k-error linear complexity over \mathbb{F}_{p} of sequences of length $2 p$ with optimal threelevel autocorrelation. These balanced sequences are constructed from cyclotomic classes of order four using a method presented by Ding et al. We obtained the upper and lower bounds of k-error linear complexity and determine the exact values of the k-error linear complexity $L_{k}(u)$ for $1 \leq k<(p-$ 1)/4 and $(p-1) / 4+2 \leq k<(p-1) / 3$.

Acknowledgements

The reported study was funded by RFBR and NSFC according to the research project no. 19-51-53003.

References

[1] Golomb S W and Gong G 2005 Signal Design for Good Correlation: For Wireless Communications, Cryptography and Radar Applications (Cambridge University Press)
[2] Ding C, Helleseth T and Martinsen H 2001 IEEE Trans. Info. Theory 47428 - 433.
[3] Lidl R and Niederreiter H 1983 Finite Fields (Addison-Wesley)
[4] Zhang J and Zhao C 2015 Appl. Algebra Eng. Commun. Comput. 26 (5) 475-491.
[5] Edemskiy V and Palvinskiy A 2015 Inf. Process. Lett. 116 (2) 153-156
[6] Ding C, Xiao G. and Shan W 1991 The Stability Theory of Stream Ciphers in Lecture Notes in Computer Science (Springer-Verlag, Berlin) p 561
[7] Stamp M and Martin C F 1993 IEEE Trans. Inform. Theory 39 1398-1401
[8] Aly H and Winterhof A 2006 Des. Codes Crypt. 40 369-374
[9] Aly H, Meidl W and Winterhof A 2007 J. Math. Crypt. 1 1-14

IOP Conf. Series: Journal of Physics: Conf. Series 1352 (2019) 012011 doi:10.1088/1742-6596/1352/1/012011
[10] Hall M 1975 Combinatorial Theory (Wiley, New York)
[11] Ireland K and Rosen M 1982 Classical Introduction to Modern Number Theory (Springer, Berlin)
[12] Cusick T, Ding C and Renvall A 1998 Stream Ciphers and Number Theory (North-Holland Publishing Co., Amsterdam)

