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Abstract. We investigate the 𝑘-error linear complexity over 𝔽𝑝 of binary sequences of length 

2𝑝 with optimal three-level autocorrelation. These balanced sequences are constructed from 

cyclotomic classes of order four using a method presented by Ding et al. 

1. Introduction 

Autocorrelation is an important measure of pseudo-random sequence for their application in code-

division multiple access systems, spread spectrum communication systems, radar systems and so on [1]. 

An important problem in sequence design is to find sequences with optimal autocorrelation. In their 

paper, Ding et al. [2] gave several new families of binary sequences of period 2𝑝 with optimal 

autocorrelation {−2.2}. 
The linear complexity is another important characteristic of pseudo-random sequence, which is 

significant for cryptographic applications. It is defined as the length of the shortest linear feedback shift 

register that can generate the sequence [3]. The linear complexity of above-mention sequences over the 

finite field of order two was investigated in [4] and in [5] over the finite field 𝔽𝑝 of 𝑝 elements and other 

finite fields. However, high linear complexity can not guarantee that the sequence is secure. For 

example, if changing one or few terms of a sequence can greatly reduce its linear complexity, then the 

resulting key stream would be cryptographically weak. Ding et al. [6] noticed this problem first in their 

book, and proposed the weight complexity and the sphere complexity. Stamp and Martin [7] introduced 

the 𝑘-error linear complexity, which is the minimum of the linear complexity and sphere complexity. 

The 𝑘-error linear complexity of a sequence 𝑟 is defined by 𝐿𝑘(𝑟) = min
𝑡
𝐿(𝑡), where the minimum of 

the linear complexity 𝐿(𝑡) is taken over all 𝑁-periodic sequences 𝑡 = (𝑡𝑛) over 𝔽𝑝 for which the 

Hamming distance of the vectors (𝑟0, 𝑟1, … , 𝑟𝑁−1) and (𝑡0, 𝑡1, … , 𝑡𝑁−1) is at most 𝑘. Complexity 

measures for sequences over finite fields, such as the linear complexity and the k-error linear 

complexity, play an important role in cryptology. Sequences that are suitable as keystreams should 

possess not only a large linear complexity but also the change of a few terms must not cause a significant 

decrease of the linear complexity. 

In this paper we derive the 𝑘-error linear complexity of binary sequences of length 2𝑝 from [2] over 

𝔽𝑝. These balanced sequences with optimal three-level autocorrelation are constructed by cyclotomic 

classes of order four. Earlier, the linear complexity and the 𝑘-error linear complexity over 𝔽𝑝 of the 

Legendre sequences and series of other cyclotomic sequences of length 𝑝 were investigated in [8, 9]. 
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2. Preliminaries 

First, we briefly repeat the basic definitions from [2] and the general information. 

Let 𝑝 be a prime of the form 𝑝 ≡ 1(mod 4), and let 𝜃 be a primitive root modulo 𝑝 [10]. By 

definition, put 𝐷0 = {𝜃
4𝑠 mod 𝑝; 𝑠 = 1, . . . , (𝑝 − 1)/4} and 𝐷𝑛 = 𝜃

𝑛𝐷0, 𝑛 = 1,2,3. Then these 𝐷𝑛 are 

cyclotomic classes of order four [10]. 

The ring of residue classes ℤ2𝑝 ≅ ℤ2 × ℤ𝑝 under the isomorphism ϕ(𝑎) = (𝑎 mod 2, 𝑎 mod 𝑝) 

[11]. Ding et al. considered balanced binary sequences defined as  

 𝑢𝑖 = {
1, if 𝑖 mod 2𝑝 ∈ 𝐶,
0, if 𝑖 mod 2𝑝 ∉ 𝐶,

 (1) 

for 𝐶 = ϕ−1({0} × ({0} ∪ 𝐷𝑚 ∪ 𝐷𝑗) ∪ {1} × (𝐷𝑙 ∪ 𝐷𝑗)) where 𝑚, 𝑗, and 𝑙 are pairwise distinct 

integers between 0 and 3 [2]. Here we regard them as sequences over the finite field 𝔽𝑝. 

By [2], if {𝑢𝑖} has an optimal autocorrelation value then 𝑝 ≡ 5 (mod 8) and 𝑝 = 1 + 4𝑦2, (𝑚, 𝑗, 𝑙) =
(0,1,2), (0,3,2), (1,0,3), (1,2,3) or 𝑝 = 𝑥2 + 4, 𝑦 = −1, (𝑚, 𝑗, 𝑙) = (0,1,3), (0,2,3), (1,2,0), (1,3,0). 
Here 𝑥, 𝑦 are integers and 𝑥 ≡ 1(mod 4). 

It is well known [12] that if 𝑟 is a binary sequence with period 𝑁, then the linear complexity 𝐿(𝑟) of 

this sequence is defined by  

 𝐿(𝑟) = 𝑁 − deg(gcd(𝑥𝑁 − 1, 𝑆𝑟(𝑥))), 
where 𝑆𝑟(𝑥) = 𝑟0 + 𝑟1𝑥+. . . +𝑟𝑁−1𝑥

𝑁−1. Let's assume we investigate the linear complexity of 𝑢 over 

𝔽𝑝 and with a period 2𝑝. So, 

 𝐿(𝑢) = 2𝑝 − deg(gcd((𝑥2 − 1)𝑝, 𝑆𝑢(𝑥))). 
The weight of 𝑓(𝑥), denoted as 𝑤(𝑓), is defined as the number of nonzero coefficients of 𝑓(𝑥). From 

our definitions it follows that if the Hamming distance of the vectors (𝑢0, 𝑢1, … , 𝑢2𝑝−1) and 

(𝑡0, 𝑡1, … , 𝑡2𝑝−1) is at most 𝑘 then there exists 𝑓(𝑥) ∈ 𝔽𝑝,    𝑤(𝑓) ≤ 𝑘 such that 𝑆𝑡(𝑥) = 𝑆𝑢(𝑥) + 𝑓(𝑥) 

and the reverse is also true. Therefore  

𝐿𝑘(𝑢) = 2𝑝 −max
𝑓(𝑥)

(𝑚0 +𝑚1)  (2) 

where 0 ≤ 𝑚𝑗 ≤ 𝑝, 𝑆𝑢(𝑥) + 𝑓(𝑥) ≡ 0(mod(𝑥 − 1)
𝑚0(𝑥 + 1)𝑚1) and 𝑓(𝑥) ∈ 𝔽𝑝[𝑥], 𝑤(𝑓) ≤ 𝑘. 

Let 𝑔 be an odd number in the pair 𝜃, 𝜃 + 𝑝, then 𝑔 is a primitive root modulo 2𝑝 [11]. By definition, 

put 𝐻0 = {𝑔
4𝑠 mod 2𝑝; 𝑠 = 1, . . . , (𝑝 − 1)/4}. Denote by 𝐻𝑛 a set 𝑔𝑛𝐻0, 𝑛 = 1,2,3. Let us introduce 

the auxiliary polynomial 𝑆𝑛(𝑥) = ∑𝑖∈𝐻𝑛 𝑥
𝑖. The following formula was proved in [5].  

 𝑆𝑢(𝑥) ≡ (𝑥
𝑝 + 1)𝑆𝑗(𝑥) + 𝑥

𝑝𝑆𝑚(𝑥) + 𝑆𝑙(𝑥) + 1(mod (𝑥
2𝑝 − 1)). (3) 

By (3) we have  

 {
𝑆𝑢(𝑥) ≡ 2𝑆𝑗(𝑥) + 𝑆𝑚(𝑥) + 𝑆𝑙(𝑥) + 1(mod (𝑥 − 1)

𝑝),

𝑆𝑢(𝑥) ≡ 𝑆𝑙(𝑥) − 𝑆𝑚(𝑥) + 1(mod (𝑥 + 1)
𝑝).

 (4) 

Let the sequences {𝑞𝑖} and {𝑣𝑖} be defined by  

𝑞𝑖 = {

2, if 𝑖 mod 𝑝 ∈ 𝐷𝑗,                      

1, if 𝑖 mod 𝑝 ∈ {0} ∪ 𝐷𝑚 ∪ 𝐷𝑙 ,
0, otherwise,                               

  and  𝑣𝑖 = {
2, if 𝑖 mod 𝑝 ∈ {0} ∪ 𝐷𝑚,
1, if 𝑖 mod 𝑝 ∈ 𝐷𝑙 ,              
0, otherwise.                     

(5) 

By definition, put 𝑆𝑞(𝑥) = ∑
𝑝−1
𝑖=0 𝑞𝑖𝑥

𝑖 and 𝑆𝑣(𝑥) = ∑
𝑝−1
𝑖=0 𝑣𝑖𝑥

𝑖. Then by the choice of 𝑔 we obtain 

that  

 {
2𝑆𝑗(𝑥) + 𝑆𝑚(𝑥) + 𝑆𝑙(𝑥) + 1 ≡ 𝑆𝑞(𝑥)(mod(𝑥 − 1)

𝑝),

𝑆𝑚(𝑥) − 𝑆𝑙(𝑥) + 1 ≡ 𝑆𝑣(𝑥)(mod(𝑥 − 1)
𝑝).

 (6) 

 

As noted above, the 𝑘-error linear complexity of cyclotomic sequences was investigated in [9]. With 

the aid of methods from [9] it is an easy matter to prove the following  
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𝐿𝑘(𝑞) =

{
 
 

 
 
3(𝑝−1)

4
+ 1, if 0 ≤ 𝑘 ≤

𝑝−1

4
,                                  

(𝑝−1)

2
+ 1, if 

𝑝−1

4
+ 1 ≤ 𝑘 <

𝑝−1

3
,                     

1,            if 𝑘 =
𝑝−1

2
,                                       

(7) 

and (𝑝 − 1)/4 + 1 ≤ 𝐿𝑘(𝑞) ≤ (𝑝 − 1)/2 + 1 if (𝑝 − 1)/3 ≤ 𝑘 < (𝑝 − 1)/2.  

𝐿𝑘(𝑣) =

{
 
 

 
 
𝑝,              if 𝑘 = 0,                                                             

3(𝑝−1)

4
+ 1, if 1 ≤ 𝑘 <

𝑝−1

4
,                                                   

𝑝−1

2
+ 1,   if 

(𝑝−1)

4
+ 1 ≤ 𝑘 <

𝑝−1

3
,                                 

   0,              if 𝑘 ≥
𝑝−1

2
+ 1.                                                   

(8) 

and 9(𝑝 − 1)/16 ≤ 𝐿(𝑝−1)/4(𝑣) ≤ 3(𝑝 − 1)/4 + 1, (𝑝 − 1)/4 ≤ 𝐿𝑘(𝑣) ≤ (𝑝 − 1)/2 if (𝑝 − 1)/3 ≤

𝑘 < (𝑝 − 1)/2. 

The following statements we also obtain by [9] or by Lemma 3 from [5]. 

Lemma 1.  

1. 𝑆𝑛(𝑥) = −1/4 + (𝑥 − 1)
(𝑝−1)/4𝐸𝑛(𝑥) and 𝐸𝑛(1) ≠ 0, 𝑛 = 0,1,2,3; 

2. 𝑆𝑛(𝑥) = −1/4 + (𝑥 + 1)
(𝑝−1)/4𝐹𝑛(𝑥) and 𝐹𝑛(−1) ≠ 0, 𝑛 = 0,1,2,3; 

3. Let 𝑆𝑙(𝑥) + 𝑆𝑚(𝑥) + 𝑔(𝑥) ≡ 0(mod (𝑥 − 1)
(𝑝−1)/4+1) and |𝑙 − 𝑚| ≠ 2. Then 𝑤(𝑔(𝑥)) ≥

(𝑝 − 1)/4. 
Let us introduce the auxiliary polynomial 𝑅(𝑥) = ∑4𝑖=0 𝑐𝑖𝑆𝑖(𝑥), 𝑐𝑖 ∈ ℤ. Denote a formal derivative 

of order 𝑛 of the polynomial 𝑅(𝑥) by 𝑅(𝑛)(𝑥). 

Lemma 2. Let 𝑅(𝑛)(𝑥)|𝑥=±1 = 0 if 0 ≤ 𝑛 ≤ (𝑝 − 1)/4. Then 𝑅(𝑛)(𝑥)|𝑥=±1 = 0 for (𝑝 − 1)/4 +
1 < 𝑛 < (𝑝 − 1)/2. 

Proof. We consider the sequences {𝑟𝑡} of length 𝑝 defined by 

 𝑟𝑡 = {
0, if 𝑡 = 0,
𝑐𝑖, if 𝑡 ∈ 𝐷𝑖.

 

By the definition of the sequence, 𝑆𝑟(𝑥) ≡ 𝑅(𝑥)(mod (𝑥
𝑝 − 1)), so that by the condition of this 

lemma 𝐿(𝑟) < 3(𝑝 − 1)/4. By Theorem 1 from [9] for the cyclotomic sequences 𝐿(𝑟) = 𝑝 − 𝑐(𝑝 −
1)/4, 1 ≤ 𝑐 ≤ 3. Hence, 𝐿(𝑟) ≤ 𝑝 − (𝑝 − 1)/2. This completes the proof of Lemma 2. 

This lemma can also be proved using Lemma 2 and 3 from [5]. 

3. The exact values of the 𝒌-error linear complexity of 𝒖 for 𝟏 ≤ 𝒌 < (𝒑 − 𝟏)/𝟒 

In this section we obtain the upper and lower bounds of the 𝑘-error linear complexity and determine the 

exact values for the 𝑘-error linear complexity 𝐿𝑘(𝑢),1 ≤ 𝑘 < (𝑝 − 1)/4. 

First of all, we consider the case 𝑘 = 1. Our first contribution in this paper is the following. 

Lemma 3. Let {𝑢𝑖} be defined by (1) for 𝑝 > 5. Then 𝐿1(𝑢) = (7𝑝 + 1)/4. 

Proof. Since 𝐿1(𝑢) ≤ 𝐿(𝑢) and 𝐿(𝑢) = (7𝑝 + 1)/4 [5], it follows that 𝐿1(𝑢) ≤ (7𝑝 + 1)/4. 

Assume that 𝐿1(𝑢) < 𝐿(𝑢). Then there exists 𝑓(𝑥) = 𝑎𝑥𝑏 , 𝑎 ≠ 0 such that 𝑆𝑢(𝑥) + 𝑎𝑥
𝑏 ≡ 0(mod(𝑥 −

1)𝑚0(𝑥 + 1)𝑚1) for 𝑚0 +𝑚1 > (𝑝 − 1)/4. By (4) the last comparison is impossible for 𝑝 ≠ 5.  

If 𝑝 = 5 then 𝐿1(𝑢) = 8. 

Lemma 4. Let {𝑢𝑖}, {𝑞𝑖}, {𝑣𝑖} be defined by (1) and (5), respectively. Then 𝐿𝑘(𝑞) + 𝐿𝑘(𝑣) ≤ 𝐿𝑘(𝑢). 
Proof. Suppose 𝑆𝑢(𝑥) + 𝑓(𝑥) ≡ 0(mod (𝑥 − 1)

𝑚0(𝑥 + 1)𝑚1), 𝑤(𝑓) ≤ 𝑘 and 𝑚0 +𝑚1 = 2𝑝 −
𝐿𝑘(𝑢). Combining this with (4) and (6) we get 𝑆𝑞(𝑥) + 𝑓(𝑥) ≡ 0(mod(𝑥 − 1)

𝑚0) and 𝑆𝑙(𝑥) −

𝑆𝑚(𝑥) + 1 + 𝑓(𝑥) ≡ 0(mod(𝑥 + 1)
𝑚1) or 𝑆𝑚(𝑥) − 𝑆𝑙(𝑥) + 1 + 𝑓(−𝑥) ≡ 0(mod(𝑥 − 1)

𝑚1) Hence 

𝑚0 ≤ 𝑝 − 𝐿𝑘(𝑞) and 𝑚1 ≤ 𝑝 − 𝐿𝑘(𝑣). This completes the proof of Lemma 4. 

Lemma 5. Let {𝑢𝑖} be defined by (1) and 𝑘 ≥ 2. Then 𝐿𝑘(𝑢) ≤ 3(𝑝 − 1)/4 + 1 + 𝐿𝑘−2(𝑞). 
Proof. From our definition it follows that there exists ℎ(𝑥) such that 

𝑆𝑞(𝑥) + ℎ(𝑥) ≡ 0(mod (𝑥 − 1)
𝑝−𝐿𝑘−2(𝑞)), 𝑤(ℎ) ≤ 𝑘 − 2. 
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Then, by Lemma 1 ℎ(𝑥) ≡ 0(mod (𝑥 − 1)(𝑝−1)/4). Let ℎ(𝑥) = ∑ ℎ𝑖𝑥
𝑎𝑖. We consider 𝑓(𝑥) = ∑ 𝑓𝑖𝑥

𝑏𝑖 

where 

𝑏𝑖 = {
𝑎𝑖,             if 𝑎𝑖 is an even,

𝑎𝑖 + 𝑝, if 𝑎𝑖 is an odd.     
 

By definition 𝑓(𝑥) ≡ ℎ(𝑥)(mod (𝑥 − 1)𝑝), hence 𝑆𝑞(𝑥) + 𝑓(𝑥) ≡ 0(mod (𝑥 − 1)
𝑝−𝐿𝑘−2(𝑞)). 

Further, since ℎ(𝑥) ≡ 0(mod (𝑥 − 1)(𝑝−1)/4) and 𝑓(𝑥) = 𝑓(−𝑥), it follows that 

𝑓(𝑥) ≡ 0 (mod (𝑥 + 1)(𝑝−1)/4). 
Using (3), we obtain that 

𝑆𝑢(𝑥) + (𝑥
𝑝 − 1)/2 + 𝑓(𝑥) ≡  (𝑥𝑝 − 1)(𝑆𝑗(𝑥) + 𝑆𝑚(𝑥) + 1/2) + 𝑆𝑞(𝑥) + 𝑓(𝑥)(mod (𝑥

2 − 1)𝑝). 

From this by Lemma 1 we can establish that 

𝑆𝑢(𝑥) + (𝑥
𝑝 − 1)/2 + 𝑓(𝑥) ≡ 0 (mod (𝑥 − 1)𝑝−𝐿𝑘−2(𝑞)(𝑥 + 1)(𝑝−1)/4). 

The conclusion of this lemma then follows from (2). 

Theorem 1. Let {𝑢𝑖} be defined by (1) and 2 ≤ 𝑘 < (𝑝 − 1)/4. Then 𝐿𝑘(𝑢) = 3(𝑝 − 1)/2 + 2. 

Proof. By Lemmas 3 and 4 it follows that 𝐿𝑘(𝑣) + 𝐿𝑘(𝑞) ≤ 𝐿𝑘(𝑢) ≤ 3(𝑝 − 1)/4 + 1 + 𝐿𝑘−2(𝑞). 
To conclude the proof, it remains to note that 𝐿𝑘(𝑣) = 𝐿𝑘(𝑞) = 𝐿𝑘−2(𝑞) = 3(𝑝 − 1)/4 + 1 for 2 ≤
𝑘 < (𝑝 − 1)/4 by (7), (8). 

4. The estimates of 𝒌-error linear complexity 

In this section we determine the exact values of the 𝑘-error linear complexity of 𝑢 for (𝑝 − 1)/4 + 2 ≤
𝑘 < (𝑝 − 1)/3 and we obtain the estimates for the other values of 𝑘. Farther, we consider two cases. 

Let (𝑚, 𝑗, 𝑙) = (0,1,3), (0,2,3), (1,2,0), (1,3,0) 
Lemma 6. Let {𝑢𝑖} be defined by (1). Then 21(𝑝 − 1)/16 + 1 ≤ 𝐿(𝑝−1)/4(𝑢) ≤ 3(𝑝 − 1)/2 + 2 

and 𝑝 + 1 ≤ 𝐿(𝑝−1)/4+1(𝑢) ≤ 3(𝑝 − 1)/2 + 2 for 𝑝 > 5. 

The statement of this lemma follows from Lemmas 4, 5 and (7), (8). 

Theorem 2. Let {𝑢𝑖} be defined by (1) for (𝑚, 𝑗, 𝑙) = (0,1,3), (0,2,3), (1,2,0), (1,3,0) and (𝑝 −
1)/4 + 2 ≤ 𝑘 < (𝑝 − 1)/3. Then 𝐿𝑘(𝑢) = 𝑝 + 1.   

Proof. We consider the case when (𝑚, 𝑗, 𝑙) = (0,1,3). Let 𝑓(𝑥) = 𝑥𝑝/2 − (𝜌 + 3)/4 − (𝜌 +
1)𝑥𝑝𝑆0(𝑥) where 𝜌 = 𝜃(𝑝−1)/4 is a primitive 4-th root of unity modulo 𝑝. Then 𝑤(𝑓) = 2 + (𝑝 − 1)/4. 

Denote 𝑆𝑢(𝑥) + 𝑓(𝑥) by ℎ(𝑥). Under the conditions of this theorem we have 

ℎ(𝑥) = (𝑥𝑝 + 1)𝑆1(𝑥) + 𝑥
𝑝𝑆0(𝑥) + 𝑆3(𝑥) + 1 +

𝑥𝑝

2
−
𝜌 + 3

4
− (𝜌 + 1)𝑥𝑝𝑆0(𝑥).                  

Hence ℎ(1) = 0. Let ℎ(𝑛)(𝑥) be a formal derivative of order 𝑛 of the polynomial ℎ(𝑥). By Lemmas 2 

and 3 from [5] we have that ℎ(𝑛)(1) = 0 if 1 ≤ 𝑛 < (𝑝 − 1)/4 and by Lemma 3 from [5] ℎ(𝑝−1)/4(1) =
(2𝜌 + 1 + 𝜌3 − (𝜌 + 1))(𝑝 − 1)/4 = 0. Hence, by Lemma 2 ℎ(𝑛)(1) = 0 if (𝑝 − 1)/4 < 𝑛 < (𝑝 −
1)/2 and ℎ(𝑥) ≡ 0(mod (𝑥 − 1)(𝑝−1)/2). 

Further, ℎ(−1) = −1/4 + 1/4 + 1 − 1/2 − (𝜌 + 3)/4 + (𝜌 + 1)/4 = 0 and ℎ(𝑝−1)/4(−1) =
(−1 + 𝜌3 + (𝜌 + 1))(𝑝 − 1)/4 = 0. So, by Lemma 2 ℎ(𝑛)(1) = 0 if 1 < 𝑛 < (𝑝 − 1)/2 and ℎ(𝑥) ≡
0(mod(𝑥 + 1)(𝑝−1)/2). Therefore, by (2) we see that 𝐿(𝑝−1)/4+2 ≤ 𝑝 + 1. On the other hand, by Lemma 

4 𝐿𝑘(𝑢) ≥ 𝐿𝑘(𝑣) + 𝐿𝑘(𝑞). To conclude the proof, it remains to note that 𝐿𝑘(𝑣) + 𝐿𝑘(𝑞) = 𝑝 + 1 for 

(𝑝 − 1)/4 + 2 < 𝑘 < (𝑝 − 1)/3 by (7), (8). The other cases may be considered similarly. Theorem 2 

is proved.  

Farther, if (𝑝 − 1)/3 ≤ 𝑘 < (𝑝 − 1)/2 then by Lemma 4, Theorem 2 and (7), (8) we have that (𝑝 −
1)/2 + 1 ≤ 𝐿𝑘(𝑢) ≤ 𝑝 + 1. It is simple to prove that 𝐿(𝑝−1)/2+2(𝑢) ≤ (𝑝 − 1)/2 + 2. 

Let  (𝑚, 𝑗, 𝑙) = (0,1,2), (0,3,2), (1,0,3), (1,2,3). Similarly as in subsection 4.1, we have that 21(𝑝 −
1)/16 + 1 ≤ 𝐿(𝑝−1)/4(𝑢) ≤ 3(𝑝 − 1)/2 + 2. 

Theorem 3. Let {𝑢𝑖} be defined by (1) for (𝑚, 𝑗, 𝑙) = (0,1,2), (0,3,2), (1,0,3), (1,2,3) and (𝑝 −
1)/4 + 1 ≤ 𝑘 < (𝑝 − 1)/3 then 𝐿𝑘(𝑢) = 5(𝑝 − 1)/4 + 2. 

Proof. We consider the case when (𝑚, 𝑗, 𝑙) = (0,1,2). Let here 𝑓(𝑥) = −1/2 − 2𝑆2(𝑥) and ℎ(𝑥) =
𝑆𝑢(𝑥) + 𝑓(𝑥). Since (𝑚, 𝑗, 𝑙) = (0,1,2) it follows that 
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ℎ(𝑥) = (𝑥𝑝 + 1)𝑆1(𝑥) + 𝑥
𝑝𝑆0(𝑥) + 𝑆2(𝑥) + 1 − 1/2 − 2𝑆2(𝑥).

Hence ℎ(1) = 0. By Lemma 2 from [5] we have that ℎ(𝑛)(1) = 0 if 1 ≤ 𝑛 < (𝑝 − 1)/4. Hence

ℎ(𝑥) ≡ 0(mod (𝑥 − 1)(𝑝−1)/4).
Further, ℎ(−1) = 0 and ℎ(𝑝−1)/4(−1) = (−1 + 𝜌2 − 2𝜌2)(𝑝 − 1)/4 = 0. So, ℎ(𝑛)(−1) = 0 if

1 < 𝑛 < (𝑝 − 1)/2 and ℎ(𝑥) ≡ 0(mod (𝑥 + 1)(𝑝−1)/2). Therefore, by (2) we see that 𝐿(𝑝−1)/4+2 ≤

2𝑝 − 3(𝑝 − 1)/4. 

Suppose 𝐿(𝑝−1)/4+2 < 2𝑝 − 3(𝑝 − 1)/4; then by (2) there exist 𝑚0, 𝑚1 such that 𝑚0 +𝑚1 > 3(𝑝 −

1)/4 and 𝑆𝑢(𝑥) + 𝑓(𝑥) ≡ 0(mod (𝑥 − 1)
𝑚0(𝑥 + 1)𝑚1), 𝑤(𝑓) ≤ 𝑘 < (𝑝 − 1)/3.

We consider two cases. 

(i) Let 𝑚0 ≤ (𝑝 − 1)/4 or 𝑚1 ≤ (𝑝 − 1)/4. Then 𝑚1 > (𝑝 − 1)/2 or 𝑚0 > (𝑝 − 1)/2 and by (4)

and (6) we obtain 𝐿𝑘(𝑞) < (𝑝 + 1)/2 or 𝐿𝑘(𝑣) < (𝑝 + 1)/2. This is impossible for 𝑘 < (𝑝 − 1)/3 by

(7) or (8). 

(ii) Let min(𝑚0, 𝑚1) > (𝑝 − 1)/4. We can write that 𝑓(𝑥) = 𝑓0(𝑥
2) + 𝑥𝑓1(𝑥

2). Therefore, since

2𝑆1(𝑥) + 𝑆0(𝑥) + 𝑆2(𝑥) + 1 + 𝑓(𝑥) ≡ 0(mod (𝑥 − 1)
𝑚0) and 𝑆2(𝑥) − 𝑆0(𝑥) + 1 + 𝑓(𝑥) ≡

0(mod (𝑥 + 1)𝑚1) or −𝑆2(𝑥) + 𝑆0(𝑥) + 1 + 𝑓0(𝑥
2) − 𝑥𝑓1(𝑥

2) ≡ 0(mod (𝑥 − 1)𝑚1) we see that

𝑆1(𝑥) + 𝑆0(𝑥) + 1 + 𝑓0(𝑥
2) ≡ 0(mod (𝑥 − 1)min(𝑚0,𝑚1)). Hence, 𝑤(𝑓0) ≥ (𝑝 − 1)/4 by Lemma 1.

Similarly, −2𝑆1(𝑥) − 𝑆0(𝑥) − 𝑆2(𝑥) + 1 + 𝑓0(𝑥
2) − 𝑥𝑓1(𝑥

2) ≡ 0(mod (𝑥 + 1)𝑚1)) and 𝑆2(𝑥) −
𝑆0(𝑥) + 1 + 𝑓0(𝑥

2) + 𝑥𝑓1(𝑥
2) ≡ 0 (mod(𝑥 + 1)𝑚1) so 𝑆1(𝑥) + 𝑆2(𝑥) + 1 + 𝑥𝑓1(𝑥

2) ≡ 0(mod (𝑥 −
1)min(𝑚0,𝑚1)). Hence, 𝑤(𝑓1) ≥ (𝑝 − 1)/4 by Lemma 1. This contradicts the fact that 𝑤(𝑓) < (𝑝 −
1)/3.  

Similarly, if (𝑝 − 1)/3 ≤ 𝑘 < (𝑝 − 1)/2 then by Lemma 4, Theorem 2 and (7), (8) we have that 

(𝑝 − 1)/2 + 1 ≤ 𝐿𝑘(𝑢) ≤ 2𝑝 − 3(𝑝 − 1)/4. Here 𝐿(𝑝−1)/2+2(𝑢) ≤ 3(𝑝 − 1)/4 + 2.

In the conclusion of this section note that we can improve the estimate of Lemma 5 for 𝑘 ≥ (𝑝 −
1)/2 + 1. With similar arguments as above we obtain the following results for 𝑢. 

Lemma 7. Let {𝑢𝑖} be defined by (1) and 𝑘 = (𝑝 − 1)/2 + 𝑓, 𝑓 ≥ 0. Then 𝐿𝑘(𝑢) ≤ 𝐿[𝑓/2](𝑣) + 1

where [𝑓/2] is the integral part of number 𝑓/2. 

5. Conclusion

We investigated the 𝑘-error linear complexity over 𝔽𝑝 of sequences of length 2𝑝 with optimal three-

level autocorrelation. These balanced sequences are constructed from cyclotomic classes of order four 

using a method presented by Ding et al. We obtained the upper and lower bounds of 𝑘-error linear 

complexity and determine the exact values of the 𝑘-error linear complexity 𝐿𝑘(𝑢) for 1 ≤ 𝑘 < (𝑝 −
1)/4 and (𝑝 − 1)/4 + 2 ≤ 𝑘 < (𝑝 − 1)/3. 
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