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Abstract. We analyze aggregated traffic dynamics obtained from strongly linked network 

communities. Our results based on two empirical data traces from university campus networks 

indicate that neglecting the statistical links between traffic patterns generated by individual 

network nodes leads to the drastic underestimation of both waiting and sojourn times. We also 

show that similar effects can be observed in simulated traffic patterns obtained by agent based 

modeling. Moreover, we suggest several indices that could be used to quantify the links between 

nodes and show their relation with the queuing system performance indicators. 

1. Introduction 

Modern public networks are typically characterized by intensive interactions between end users leading 

to the formation of strongly linked online communities. Such communities are often formed due to the 

users' interactions by means of various social network as well as professional online forums. Posting 

links that attract high attention in online resources lead to the abrupt traffic bursts at particular nodes 

hosting the information of interest. Additionally, localized communities are often formed by neighbors 

that are located closely to each other also in terms of network topology leading to similar effects in the 

local area networks (LAN) traffic patterns. 

Conventional approach to the mathematical modeling of network traffic since the pioneering works 

of Erlang [1] relied upon the assumption that arrivals are independent of each other thus neglecting both 

auto- and cross-correlations in the users' access patterns. Providing reliable estimates for the entire era 

of telephones and early dial-up network communications, this approach remained being widely 

employed until the late 1980s. Over a long time particular model development have been focused mainly 

on the technical aspects of data transmission protocols such as packet data organization [2] leading to 

the modification like modulation of Poisson flow by a Markovian process [3] incorporating associated 

delays that were significant especially with the technologies of the time. 

Although the emergence of erratic bursts in network traffic patterns as well as their association with 

the intensification of inter-user interactions dates back to the mid-1990s [4–6], in the last decade the role 

of the recent development of social networks and their impact on the users' activities that in turn 

determine traffic dynamics has been further elucidated [7–9]. Besides agent-based modeling, 

simulations based on phenomenological observations of long-term memory in the aggregated network 

traffic patterns have been developed [10–12]. 
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For a better consideration of the variations in the users' activity patterns, in a series of recent 

publications [13–15] we considered a combination of the above approaches, including aggregated traffic 

modeling by Poisson flow of variable intensity determined by the number of active users in each time 

fragment based on the superstatistical approach [13], which was later superimposed by long-term 

memory in the users' activity patterns [14] with model parameters adjusted according to the universal 

rank-size traffic intensity distributions obtained from multiple empirical observations [15].  

Our results indicate that the underestimation of the key performance indicators from queuing theory 

such as waiting and sojourn times could be reduced from 2–4 decades as provided by direct application 

of the conventional Kingman's formula [16] to less than one decade by considering appropriate models 

of both intensity distributions and long-term correlations in the users' access patterns under high network 

utilization conditions [13–15]. Although the above accuracy appears acceptable to a certain extent for 

such purposes as similar networks design where common hardware solutions provide one-decade 

scalability (100Mbps–1Gbps–10Gbps etc.), nevertheless more accurate estimations are required for 

other purposes such as the dynamic network resource control. 

In the view of the above, we revisit our recent finding and suggest certain solutions that could lead 

to the generalization of our recently proposed network traffic models considering their keynote 

drawbacks. To our opinion, the first key drawback is that only autocorrelations in the traffic patterns 

have been simulated, this way only indirectly accounting for the cross-correlations in the access patterns 

induced by inter-user interactions. The second keynote aspect that only linear long-term memory models 

characterized by a single Hurst exponent have been considered, resulting in only partial assessment of 

the corresponding nonlinear effects achieved by the intrinsic linearization effects.  

Therefore in this paper we suggest how the above limitations could be partially overcome by the 

direct assessment of the interactions between users. Moreover, in order to account also for the nonlinear 

relations between users' activity patterns, we suggest application of several metrics recently partially 

reviewed in [17] to the network traffic patterns. Considering two empirical data traces from university 

campus LANs that have been previously analyzed in [15], we show explicitly that individual access 

patterns from different network nodes indicate intrinsic cooperativity that also evolves over time. Based 

partially on our recent data [17], we show that several complementary indices used to quantify this 

cooperativity indicate characteristic phase transitions between rather autonomous and cooperative 

network activity patterns leading to considerably different dynamics of the aggregated traffic. 

2. Data sources 

We analyze two network traffic traces collected in-house at the downlinks between the local campus 

networks of St. Petersburg Electrotechnical University (LETI) and Ivanovo State University (IvSU) and 

their ISPs previously analyzed in [15]. The LETI dataset contained 10 complete daily traffic patterns 

from 17/03/2015 until 18/03/2015, from 16/04/2015 until 19/04/2015, and from 26/04/2016 until 

29/04/2016 with typically 350 and 550 active internal IPs in 2015 and 2016, respectively. The IvSU 

dataset covered 15 consecutive days from 31/01/2017 until 14/02/2017 with about 250 active internal 

IPs. The total daily downlink traffic of these networks contained typically 2–4×108 packets. Traffic 

intensity was determined in non-overlapping windows of 1s duration resulting in 86400 data points per 

24 hour cycle and evaluated in packets per second. 

3. Analysis methods 

In the following, we outline the key methods that we use to quantify cooperativity in the network traffic 

patterns induced by inter-user interactions. We consider two linear metrics based on conventional 

correlation analysis including the cross-correlation coefficients and cross-correlation times, 

respectively, as well as two nonlinear metrics based on the phase synchronization analysis and time 

delay stability estimates. For an extensive review of the latter methods as well as their performance 

analysis validated on simulated data series we refer to [17]. Due to the overwhelming amount of traffic 

directed to the busiest nodes in the network while least busy nodes being almost all the time unoccupied, 

we limited further analysis to the 100 busiest nodes for each daily access pattern. Each of the following 
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indices has been estimated in non-overlapping windows of one hour duration. For interpretation 

simplicity all indices have been normalized such that they always belong to the [0;1] interval. 

The cross-correlation analysis is based on the estimation of the averaged cross-correlation 

coefficients R between all possible pairwise combinations of users' access patterns. Additionally 

averaged correlation times T were determined by the integration of the absolute values of the mutual 

cosine similarity scores  

,
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obtained similarly for all possible pairwise combinations of users' access patterns. 

The phase synchronization analysis is based on the assessment of the instantaneous phase differences 

between two arbitrary data series [18]. The instantaneous phases are determined using Hilbert transform 

which produces a complex dataset (sometimes called the analytical signal) by adding to the original real 
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In long data series, phase differences are usually calculated in a gliding window, where neighboring 

points are treated as belonging to the same interval once the standard deviation of the phase differences 

is below a given threshold. To quantify the entire record, we have introduced the phase synchronization 

coefficient Sync that is determined as the fraction of windows with synchronous behavior [18]. Thus the 

method has at least two parameters, namely the gliding window size and the decision threshold.  

The time delay stability estimate is based on the analysis of the relative shift of the maximum of the 

cross-correlation function of two studied series. We calculate the average delay in 50% overlapping 

windows of fixed length. The time delay stability episode is determined once within at least five 

consecutive windows the shift of the maximum of the cross-correlation function remains below a given 

threshold [19]. Like in the previous method, in order to estimate the time delay stability coefficient for 

an entire record, the TDS value is determined as the fraction of the time delay stability episodes in the 

total record duration.  

4. Results 

Based on the collected data series and using the above indicators, the daily traffic dynamics as well as 

the cooperativity patterns of the users' access traces has been assessed. The results indicate that, as 

expected, the traffic exhibits a characteristic daily cycle topping during afternoon and evening hours 

(see figures 1a and 2a), in general agreement with previous observations of barely stationary dynamics 

characterized by Hurst exponents close to one [15]. In contrast, the cooperativity indicators exhibit their 

characteristic maxima in the morning hours with moderate decay in the afternoon and evening towards 

the lowest levels observed around midnight (see figures 1b and 2b). Given that synchronization in arrival 

times leads to the considerable enhancement of delays, the traffic dynamics could be to a certain extent 

characterized by such derived metrics as the effective cooperative traffic obtained as a product of the 

traffic intensity by the appropriately normalized cooperativity metric (see figures 1c and 2c) or vice 

versa by the equivalent non-cooperative traffic indicating the amount of traffic that would lead to similar 

performance indicators in the case of non-cooperative users' access dynamics. It is remarkable that the 

effective cooperative traffic is characterized by rather limited daily variability. 
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Figure 1. (a) Daily aggregated traffic, (b) Sync dynamics and  

(c) the Sync–based effective cooperative traffic estimate. 
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Figure 2. (a) Daily aggregated traffic, (b) TDS dynamics and  

(c) the TDS–based effective cooperative traffic estimate. 
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Also remarkably, both linear and nonlinear mutual behavior metrics provide nearly excellent 

reproducibility of the daily cycle as depicted in figures 3 and 4 indicating that it exhibits very 

characteristic and representative pattern while only slightly varying between the two studied LANs. 

Stability and reproducibility of the above indices in remarkable as it suggest a rather universal way of 

the cooperative access patterns simulation by generating multiple series with given mutual behavior 

indices. 

 

 

Figure 3. Cooperativity indices for the IvSU LAN traffic. 

 

 

Figure 4. Cooperativity indices for the LETI LAN traffic. 

In order to evaluate the effects of the cooperativity in the users' access patterns on the network 

performance characteristics, next simulations based on the queuing system theory principles has been 

performed. in terms of queuing theory. Either empirical or simulated packet arrival times have been 

applied to the downlink model based on the first-in-first-out (FIFO) queue with variable throughput such 

that average utilizations U between 0.1 and 0.98 have been achieved. Simulated packet arrivals were 
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obtained using the recently suggested superstatistical model by concatenation of 1s duration fragments 

of Poisson flows with variable intensity that was in turn determined by the model based on the rank-size 

statistics. 

  

  

  

  
 

Figure 5. Queuing system performance simulation results. 
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Two variants of the superstatistical model have been considered, namely the one-dimensional model 

which considered only the aggregated traffic variations that implies corresponding long-term memory 

features as well as the two-dimensional model where individual access patterns from different network 

nodes have been simulated prior to their aggregation. In the latter scenario, inherent cooperativity effects 

could be to a certain extent taken into account by considering the empirical variability of the implied 

quantities. Simulation results were next compared against both empirical data and various simplified 

model variants such as series with shuffled inter-arrival times that accurately reproduced the 

distributions while contained no memory as well as the conventional approximation based on the 

Kingman's formula [16]. As the queuing system simulation followed standard methodology, for a more 

detailed discussion of the simulation procedure as well as its results interpretation strategy we refer to 

the corresponding sections in [13–15] and relevant references therein. Based on the simulation data the 

average times required to process a single packet known as sojourn times W  given by the sum of the 

service time ST and waiting time WT as a function of the downlink utilization U have been evaluated 

(see figures 5). 

5. Conclusion and outlook 

Our results indicate that despite of the increased complexity of the two-dimensional model it 

outperformed the one-dimensional model only at extremely high utilizations U close to one. In contrast, 

at rather high but less extreme utilizations 0.7 0.9U  appearing more relevant in practical context no 

clear benefit could be observed. 

Accordingly, additional information derived from a combination of nonlinear cooperativity indices 

might be helpful for further improvement the simulation accuracy. For that, simulation of data series 

with a given combination of auto- and cross-correlations plus certain combination of cooperativity 

indices is essential. One possible solution could be achieved by using multivariate nonlinear system 

identification tools. On the contrary, a reasonable alternative could be provided by finding the 

appropriate equivalent non-cooperative traffic indicating the corresponding access rates that would lead 

to comparable performance indicators under non-cooperative access pattern scenario. 

Finally, as the proposed approach used rather universal features that are ubiquitous in nature we 

believe that similar principles could be employed for the simulation of other complex systems 

characterized by non-stationary dynamical and/or structural patterns that obey laws reasonably 

represented by superstatistical formalism (for a recent review, see e.g. [20] and references therein). 
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