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Abstract. The effect of third dimension on various physical properties of a two-electron
vertical quantum dot is analysed. We show that at specific values the magnetic field gives
rise to dynamical symmetries of the dot. A remarkable agreement between experimental data
and calculations for the additional energy exhibits important role of the dot thickness for
interpretation of ground state transitions in the magnetic field. We show that these transitions
can be successfully reproduced as well in the two-dimensional approximation (only lateral
confinement) but with the effective (screened) Coulomb interaction. We provide an analytical
expression for the screening for the case of a parabolic vertical potential.

1. Introduction
Two-electron quantum dot (QD) is a benchmark system for experimental [1] and theoretical [2]
studies of artificially trapped electrons in nanostructures. A competition between a confining
potential, approximated quite well by the harmonic oscillator (HO), and repulsive electron-
electron interaction produces a rich variety of phenomena in a perpendicular magnetic field.
Being a simplest nontrivial system, QD He poses, however, a significant challenge to theorists.

Under the magnetic field one observes the angular momentum and spin oscillations of the
ground state of the QDs with alteration of the field strength [1]. At certain field range the
oscillations disappear and it is believed that the electrons form a finite-size analog of infinite
integer quantum Hall liquid (with filling one) [2]. In QDs this fully polarized state is called
the maximum density droplet (MDD). In recent single-electron spectroscopy measurements by
Nishi et al. [3] it was found that the fully polarized triplet (m,S) = (1, 1) state (MDD phase)
can be replaced by the singlet (2, 0) state in two-electron QDs at certain values of the magnetic
field (m and S are the quantum numbers of the z-component of orbital momentum and the total
spin, respectively). According to this reference, the ground state transition from the triplet
(1, 1) state to the singlet (2, 0) state is associated with the collapse of MDD phase for N = 2.
Using a two-dimensional (2D) He QD model, one is able to reproduce a general trend for the first
singlet-triplet (ST) transitions observed in two-electron QDs under the magnetic field. However,
the experimental positions of the first and next ST transition points are systematically higher
[1, 3].

We recall thar a three-dimensional (3D) harmonic oscillator with frequencies in rational ratios
(RHO) and a Coulomb system are benchmarks for the hidden symmetries which account for the
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accidental degeneracies of their quantum spectra [4]. If the HO and the Coulomb potential are
combined, like in the dot, most of the symmetries are expected to be broken. The classical
dynamics of such a system is chaotic. The natural question arises is there any connection
between classical dynamics and quantum properties of the system ?

The major aspect of the present communication is to demonstrate the importance of the QD
thickness for various physical phenomena.

2. The Hamiltonian and hidden symmetries
The model Hamiltonian for the 3D two-electron QD reads

H=
2∑

i=1

{
1

2m∗ (pi−
e

c
Ai)2 +

m∗

2

[
ω2

0(x
2
i +y2

i ) + ω2
zz

2
i

]}
+ VC + Hspin (1)

Here the term VC = k/|r1− r2| with k = e2/4πε0εr describes the Coulomb repulsion between
electrons and Hspin = g∗µB(s1 + s2)B is the Zeeman term, where µB = |e|h̄/2mec is the Bohr
magneton. For the perpendicular magnetic field we choose the vector potential with gauge
Ai = 1

2B × ri = 1
2B(−yi, xi, 0). The confining potential is approximated with a 3D axially

symmetric harmonic oscillator and h̄ωz 6= h̄ω0 are the energy scales of confinement in the z-
direction and in the xy-plane, respectively. Here m∗ and g∗ are the effective electron mass and
g-factor, respectively, and ε is the dielectric constant.

Introducing the relative and center-of-mass coordinates r = r1 − r2, R = 1
2(r1 + r2), the

Hamiltonian (1) can be separated into the center-of-mass (CM) HCM and relative motion (RM)
Hrel terms: H = HCM + Hrel + Hspin. The solution to the CM-Hamiltonian is well known [5]
and the effect of the Zeeman energy has been discussed in [6, 7]. This term is not important for
the dynamics of Hrel and will be taken into account only in numerical analysis of experimental
data.

For our analysis it is convenient to use cylindrical scaled coordinates, ρ̃ = ρ/l0, p̃ρ = pρl0/h̄,
z̃ = z/l0, p̃z = pzl0/h̄, where l0 = (h̄/µω0)1/2 is the characteristic length of the confinement
potential with the reduced mass µ. For the sake of simplicity, we drop the tilde, i.e. for the
scaled variables we use the same symbols as before scaling. The strength parameter k of the
Coulomb repulsion goes over to λ = k/(h̄ω0l0). Typical for GaAs QDs values: h̄ω0 = 3 meV,
m∗ = 0.067me, dielectric constant ε = 12, – provide for the strength value λ = 1.5. In these
variables the Hamiltonian for the relative motion takes the form (in units of h̄ω0)

h ≡ Hrel

h̄ω0
= h0 + hz + VC =

1
2

(
p2

ρ +
m2

ρ2
+ ωρ

2ρ2 − ωLm

)
+

1
2

(
p2

z + ωz
2z2

)
+

λ

r
, (2)

where r = (ρ2 +z2)1/2, m = lz/h̄, ωL = eB/2m∗c is the Larmor frequency and ωρ = (ω2
L +ω2

0)
1/2

is the effective confinement frequency in the ρ-coordinate which depends through ωL on the
magnetic field and ωρ,z,L ⇒ ωρ,z,L/ω0. To find conditions, at which hidden symmetries can be
manifested, we focus our analysis upon the nonlinear classical dynamics of the system.

Due to the cylindrical symmetry, the z-component lz ≡ pφ of the angular momentum is
conserved and the motion in φ is separated from the motion in the (ρ, z)-plane. Since the
Coulomb term couples the two coordinates, the problem is in general non-integrable which is
reflected in the Poincaré sections shown in Fig. 1 for increasing magnetic field. There are,
however, five integrable cases. The trivial cases are ωz/ωρ → 0 and ωz/ωρ → ∞, which
correspond to 1D vertical and 2D circular QDs, respectively.

At the magnetic field ω′′L = (ω2
z/4 − ω2

0)
1/2 (ωz/ωρ = 2) the motion becomes regular (see

Fig.1b). In this case typical trajectories are exact parabolic arcs [8]. The use of the parabolic
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coordinates (ξ, η, ϕ), where ξ1 = r + z, ξ2 = r − z, immediately leads to the separability of
classical motion. In these coordinates the Hamiltonian (2) has the form

h=
1

ξ1 + ξ2

[
2(ξ1p

2
ξ1 + ξ2p

2
ξ2) +

m2

2

(
1
ξ1

+
1
ξ2

)
+

ωz
2

8
(ξ3

1 + ξ3
2) + 2λ

]
− ω′′Lm (3)

and the equation h(pξ1 , pξ2 , ξ1, ξ2) ≡ ε is equivalent to the system

2ξjp
2
ξj

+
m2

2ξj
+

ωz
2

8
ξ3
j − (ε + ω′′Lm)ξj + λ = (−1)jcz, j = 1, 2. (4)

The separation constant cz = az − ωρ
2ρ2z appears as a third integral of motion. Here

az = (zpρ − ρpz)pρ +
(

m2

ρ2 + κ
r

)
z is the z-component of the Laplace-Runge-Lenz vector

a = p × l + κr/r in (scaled) cylindrical coordinates. The vector a is a constant of motion
for the pure Coulomb system (i.e. when ωρ = ωz = 0) [4]. Note that for a two-electron QD the
constant of motion cz includes a space contribution as well.

At the value ω′L = (ω2
z − ω2

0)
1/2 (see Fig.1d) the magnetic field gives rise to the spherical

symmetry (ωz/ωρ = 1) in an axially symmetric QD [9]. In this case the Hamiltonian (2) is
separable in (scaled) spherical coordinates

h =
p2

r

2
+

(l/h̄)2

2r2
+

ωz
2r2

2
+

λ

r
− ω′Lm (5)

and the dynamics is integrable. The additional integral of motion is the square of the total
angular momentum l2.

At the magnetic field ω′′′L ≡ (4ω2
z −ω2

0)
1/2 (see Fig.1f) the Hamiltonian (2) is separable in the

coordinates ξ′1 = r + ρ, ξ′2 = r − ρ for m = 0. Note that for m = 0 the cases ωz/ωρ = 1/2 and
2 are equivalent if we exchange the ρ and z coordinates and, hence, the additional integral of
motion is |aρ−ωz

2z2ρ|. However, for m 6= 0 the Hamiltonian (2) for m 6= 0 cannot be separated
in these coordinates due to the term m2/ρ2. The separation for m 6= 0 is achieved by the virtue
of the ansatz from Ref. [10]. It gives the desired integral of motion

C = [(aρ − ωz
2z2ρ)2 + a2

ϕ + 4m2ω2
z r2]1/2. (6)

Due to existence of three independent integrals of motion, h, m and C, which are in involution,
the dynamics for m 6= 0, although non-separable, is integrable.

Although accurate numerical results for QD He can be obtained readily, the classical analysis
provides the physical insight into numerical calculations. The results obtained with the aid of
the Poincaré surfaces of sections are invariant under the coordinate transformation. On the
other hand, the integrability is a necessary condition for the existence of a coordinate system in
which the motion can be separated. In turn, the analogous quantum mechanical system would
be characterized by a complete set of quantum numbers.

The Coulomb interaction destroys the general symmetry of the 3D HO. However, the magnetic
field can recover symmetries which are common for the RHO and Coulomb systems. At a
relatively low value of the magnetic field ω′′L (for our parameters B ≈ 2.4T) we reveal the
first manifestation of the hidden symmetries. This symmetry is determined by the integral
of motion cz. It results in the appearance of shells at each m-manifold [8]. There are exact
crossings and repulsions between levels of different and of the same parity, respectively, in each
shell. The near-degeneracy of the quantum spectrum is reminiscent of a striking degeneracy
observed for the RHO or pure Coulomb systems. At higher values of the magnetic field ω′L
(B ≈ 7.5T), the dynamical spherical symmetry appears, since l2 becomes an additional integral

The International Conference on Theoretical Physics ‘Dubna-Nano2008’ IOP Publishing
Journal of Physics: Conference Series 129 (2008) 012014 doi:10.1088/1742-6596/129/1/012014

3



0 1 2 3 4 5
ρ

−4

−2

0

2

4

p ρ

(a) (b) (c) (d) (e) (f)

Figure 1. Poincaré surfaces of sections z = 0, pz > 0 of the relative motion for the axially
symmetric 3D two-electron quantum dot (λ = 1.5, ε = 10, m = 0) with: (a) ωz/ωρ = 5/2, (b)
ωz/ωρ = 2, (c) ωz/ωρ = 3/2, (d) ωz/ωρ = 1, (e) ωz/ωρ = 2/3 and (f) ωz/ωρ = 1/2. The sections
(b), (d) and (f) indicate that for the corresponding ratios ωz/ωρ the system is integrable.

of motion. This symmetry manifests itself as the attraction between levels with different orbital
quantum numbers and the same parity. In contrast to spectra of pure Coulomb systems or of the
RHO, there are no crossings between eigenstates of the subset characterized by a given quantum
number m, since the accidental degeneracy is removed. Although the symmetry is recovered
at very strong magnetic field ω′′′L (B ≈ 15.9 T) due to the appearance of the integral of motion
Eq. (6), the dynamics is non-separable for m 6= 0. Note that shells are similar to the spherical
case.

The restoration of the rotational symmetry of the electronic states by the magnetic field for
noninteracting electrons in 3D case was found within a simple shell model [11]. This phenomenon
was also recognized in the results for interacting electrons in self-assembled QDs [12]. It was
interpreted in [12] as an approximate symmetry that had survived from the noninteracting case
due to dominance of the confinement energy over relatively small Coulomb interaction energy.
However, as it is clear from the form of Eq.(5), the symmetry is exact even for strongly interacting
electrons because the radial electron-electron repulsion does not break the rotational symmetry.

3. The collapse of MDD state in the two-electron QDs
As was discussed above, theoretical calculations [6, 7] assert that after the first ST transition
the increase of the magnetic field induces several ground state transitions to higher orbital-
angular and spin-angular momentum states. This issue was addressed in transport study of the
correlated two-electron states up to 10 T in three vertical QDs [3]. In all samples clear shell
structure effects for an electron number N = 2, 6, ... at B = 0 T have been observed, implying a
high rotational symmetry. Although there is a sufficiently small deviation from this symmetry
in sample C (from now on in accordance with the list of Ref.[3]), a complete shell filling for
two and six electrons was observed. Such a shell structure is generally associated with a 2D
harmonic oscillator (x-y) confinement [1]. However, it is noteworthy that a similar shell structure
is produced by a 3D axially symmetric HO if the confinement in the z-direction ωz = 1.5ω0 is
only slightly larger than the lateral confinement (ωx = ωy = ω0). In this case six electrons fill
the lowest two shells with Fock-Darwin energy levels with nz = 0. It was also observed [3] that
the lateral confinement frequency decreases with the increase of the electron number N. In turn,
this effectively increases the ratio ωz/ω0 making the dot to be more ”two-dimensional”, since the
vertical confinement is fixed by the sample thickness. All these facts imply that the 3D nature
is a prerequisite of a consistent quantitative analysis of small QDs with a few electrons.

Our analysis is carried out by means of the exact diagonalization of the Hamiltonian
(1). The evolution of the ground-state energy of a two-electron QD under the perpendicular
magnetic field can be traced by means of the additional energy ∆µ = µ(2, B)− µ(1, B), where
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µ(N, B) = E(N, B) − E(N − 1, B) and E(N,B) denotes the total energy of the QD with N
electrons under a magnetic field of the strength B [1]. Fitting the B-field dependence of the first
and second Coulomb oscillation peak positions to the lowest Fock-Darwin energy levels of the
2D HO with the potential m∗ω2

0r
2/2, Nishi et al. [3] estimated ω0 for all three samples A, B, C.

Although the general trend in the experimental data is well reproduced by the 2D calculations,
the experimental positions of the ST transition points are systematically higher (see Fig.3 of
Ref.[3]). Different lateral confinements in the above experiment are achieved by the variation of
the electron density, without changing the sample thickness. Using the ”experimental” values
for the lateral confinement and the confinement frequency ωz as a free parameter, we found [13]
that the value h̄ωz = 8 meV provides the best fit for the positions of kinks in the additional
energy

∆µ = h̄ω0ε− E(1, B) + EZ (7)

in all three samples [13]. Here h̄ω0ε is the relative energy, E(1, B) = h̄ω0 + h̄ωz/2 and
EZ = g∗µBB[1 − (−1)m]/2 is zero for the singlet states m = 0, 2, ... It was found from the
Zeeman splitting at high magnetic fields that |g∗| = 0.3 [14] and we calculated the additional
energy with this and the bulk (|g∗| = 0.44) values.

0 2 4 6 8 10

B (T)

4.5

5

5.5

6

6.5

∆µ
 ( 

   
   

 )
m

eV

2.9 meV (3D)

2.9 meV (2D)

3.5 meV (2D)

(0,0) (1,1) (2,0) (3,1)

|g*| = 0.3

|g*| = 0.44

|g*| = 0.3

|g*| = 0.44

Figure 2. The addition energy ∆µ
as a function of the magnetic field for
the 2D model with h̄ω0 = 2.9, 3.5 meV
and for the 3D model (h̄ω0 = 2.9
meV, h̄ωz = 8 meV). Ground states
are labeled by (m,S) (see text). Grey
vertical lines indicate the position of the
experimental crossings between different
ground states. From Ref.[13]

2.0 2.4 2.8 3.2 3.6 4.0 4.4
0.0

0.4

0.8

1.2

1.6

2.0

2.4

|g*| = 0.44 |g*| = 0.3

|g*| = 0.44

|g*| = 0.3

_

_
3D (hωz= 8 meV)

2D

 

 

∆B
 (

T
)

hω0 (meV)

Figure 3. The interval ∆B in which the
singlet state (2, 0) survives as a function
of the lateral confinement for 2D and 3D
calculations. The confinement in the third
(z) direction h̄ωz = 8 meV is fixed for the
3D calculations. From Ref.[13].

The most complete experimental information is related to sample C and let us study this
sample in detail. In sample C the first experimental ST transition occurs at B = 2.3 T, while
the signatures of the second and the third ones are observed at B ≈ 5.8, 7.1 T, respectively (see
Fig.2). The 2D calculations (with the ”experimental” values h̄ω0 = 2.9 meV, |g∗| = 0.44) predict
the first, second and third ST crossings at lower magnetic fields: B = 1.7, 4.8, 5.8 T, respectively
(see Fig.2). The results can be improved to some degree with |g∗| = 0.3. To reproduce the data
for ∆µ Nishi et al. [3] have increased the lateral confinement (h̄ω0 = 3.5 meV, |g∗| = 0.44). As
a result, the first, second and third ST transitions occur at B = 2, 6.3, 7.5 T, respectively.
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Evidently, 2D calculations overestimate the importance of the Coulomb interaction. The
increase of the lateral confinement weakens simply the electron correlations in such calculations.
In contrast, the 3D calculations reproduce quite well the positions of all crossings with the
”experimental” lateral confinement h̄ω0 = 2.9 meV at B = 2.3, 5.8, 7.1 T (see Fig.2).

One of the questions addressed in the experiment [3] is related to a shoulderlike structure
observed in a small range of values of the magnetic field (see Fig.4 of [3]). This structure is
identified as the second singlet state (2, 0) that persists till the next crossing with the triplet
state (3, 1). According to Ref.[3], the ground state transition from the triplet (1, 1) state to the
singlet (2, 0) is associated with the collapse of MDD state for N = 2. Therefore, a question
arises: at which conditions it would be possible to avoid the collapse of the MDD phase (in
general, to preserve the spin-polarized state); i.e., at which conditions the singlet (2, 0) state
never will show up in the ground state. In fact, the collapse of the MDD depends crucially on
the value of the lateral confinement and the dimension of the system. We found that in the 2D
consideration the (2, 0) state always exists for experimentally available lateral confinement (see
Fig.3). Moreover, in this range of ω0 the 2D approach predicts the monotonic increase of the
interval of values of the magnetic field ∆B, at which the second singlet state survives, with the
increase of the lateral confinement. In contrast, in the 3D calculations, the size of the interval is
a vanishing function of the lateral confinement for a fixed thickness (h̄ωz = 8 meV). It is quite
desirable, however, to measure this interval to draw a definite conclusion and we hope it will
done in future.

4. Effective charge
In real samples the confining potential in the z-direction is much stronger than in the xy-
plane. This fact is, usually, used to justify a 2D approach for study of QDs. However,
there is a nonzero contribution from the vertical dynamics, since the energy level available
for each of noninteracting electrons in z-direction is ε = h̄ωz(nz + 1/2). For the lowest state
nz = 0 ⇒ ε1 = 1

2 h̄ωz. By dint of the condition Vz(±zm) ≡ m∗ω2
zz

2
m/2 = ε1 one defines the

turning points: zm =
√

h̄/(m∗ωz). We assume that the distance between turning points should

Vz

-a/2
-zm

zm

a/2

z

d o ta

ε1

Figure 4. Left: the localization of
QD in the layer of the thickness a.
Right: the schematic representation of
the position of zero-point motion in the
parabolic confinement relative to the
layer thickness.

not exceed the layer thickness, i.e. 2zm ≤ a (see Fig.4). In virtue of this inequality it follows
that the lowest limit for the vertical confinement in the layer of thickness a is h̄ωz ≥ 4h̄2/(m∗a2).
For typical GaAs samples with the thickness a between 10 nm and 20 nm this estimation gives
the minimal value for h̄ωz between 45meV and 11 meV, respectively. It results in different time
scales, i.e., Tz(= 2π/ωz) ¿ T0(= 2π/ω0) and this allows one to use the adiabatic approach [15].

To lowest order the adiabatic approach consists of averaging the 3D Hamiltonian (1) over the
angle-variables θzi = ωzit (fast variables) of the unperturbed motion (k = 0) of two electrons
after rewriting the (zi, pzi) variables in terms of the action-angle variables (Jzi , θzi) (see details
in Appendix A in [9]). As a result, one obtains the effective electron-electron interaction (see
Appendix B in [9])

V eff
int (ρ; Jz) =

2k

πρ
K

(
− 2Jz

µωzρ2

)
, (8)
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where K(x) is the complete elliptic integral of the first kind. The effective Hamiltonian for the
relative motion is Heff

rel = h0 + V eff
int (ρ; Jz) + Erel

z , where Erel
z = ωzJz = h̄ωz(nz + 1/2).

Our ansatz consists in the consideration of the effective interaction (8) in the form V eff
int =

kf(ρ)/ρ. Then one can define the effective 2D Coulomb interaction V eff
C = keff/ρ, where the

effective charge is the mean value of the factor f(ρ) upon the nonperturbed lateral wave functions

(Fock-Darwin states), i.e., keff = k〈f(ρ)〉 ≡ 〈ρ V eff
int (ρ)〉 = 2k

〈
nρ,m

∣∣∣∣K
(
− h̄ (2nz+1)

µωzρ2

)∣∣∣∣nρ, m

〉
/π.

For the lowest states (nρ = nz = 0) the effective charge is expressed in terms of the Meijer
G-function [16]

keff =
k

π|m|! G2,2
2,3

(
ωρ

ωz

∣∣∣∣
1/2 1/2
0 m+1 0

)
. (9)

Guided by the adiabatic approach, it is instructive to compute the effective charge by dint of

4.5

5

5.5

∆µ
 ( 

   
   

 )

0 2 4 6 8 10

B (T)

0.8

0.9

1

k 
   

/k
m

eV

(a)

(b)

(0,0) (1,1) (2,0) (3,1)

ef
f

2D

3D/eff.ch.

Figure 5. (a)Similar to Fig.2. The
results of plain 2D calculations (h̄ω0 =
2.9meV, |g∗| = 0.3) and full 3D ap-
proach [13] (h̄ωz = 8meV) are con-
nected by solid lines, respectively. The
vertical grey lines indicate the posi-
tion of the experimental crossings be-
tween different ground states in a sam-
ple C [3]. The results based upon the
adiabatic approximation, Eq.(9), and
the plain quantum-mechanical averag-
ing procedure, Eq.(10), are connected
by dashed and dot-dashed lines, respec-
tively. (b) The ratio keff/k as functions
of the magnetic field based on Eq.(9)
and the plain quantum-mechanical aver-
aging, Eq.(10) are connected by dashed
and dot-dashed lines, respectively.

quantum-mechanical mean value of the Coulomb term in the 3D oscillator state |nρ,m〉|nz〉:
keff = 〈〈ρ VC(ρ, z)〉〉 = k 〈〈(1 + z2/ρ2)−1/2〉〉 . Here, |nz〉 is a normalized one-dimensional
harmonic oscillator wave function [4]. Since the lateral extension exceeds the thickness of
the QDs by several times, one may suggest to consider the ratio (z/ρ)2 as a small parameter
of theory. Note, however, that the averaging over the 3D oscillator state |nρ, m〉|nz〉 implies
the application of the first order perturbation theory for calculation of the contribution of the
Coulomb interaction in QDs. For nρ = nz = 0 one obtains

keff = k
2
|m|!

(
µωρ

h̄

)|m|+1√µωz

πh̄

∫ ∞

0
K0

(
µωzρ

2

2h̄

)
eµ( 1

2
ωz−ωρ)ρ2/h̄ρ2|m|+2 dρ, (10)

where K0 is the modified Bessel function of the 2nd kind. One observes that in both definitions
of the effective charge Eqs.(9),(10) there is a contribution of the electron dynamics along the
coordinate z.

The results of calculations (see Fig.5) of the additional energy in 2D approximation (with the
effective Coulomb interaction) and in 3D approach with a full Coulomb interaction demonstrate
the remarkable accord between the predictions based on the effective charge approach and the
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observation. Note that the results based upon the adiabatic approximation are in a better
agreement with the full 3D calculations in contrast to those obtained with the aid of the plain
quantum-mechanical averaging procedure for keff = 〈〈ρ VC(ρ, z)〉〉. As discussed above, the
adiabatic approach is based on the effective separation of fast (vertical) and slow (lateral)
dynamics with subsequent averaging procedure. In contrast, the plain quantum-mechanical
averaging represents a type of perturbation theory based upon the first order contribution with
respect to the ratio z/ρ only. The increase of the quantum number m, caused by the increase
of the magnetic field strength, reduces the orbital motion of electrons in the vertical direction.
The larger is m the stronger is the centrifugal forces, which induce the electron localization in a
plane, and, therefore, the lesser is importance of the vertical electron dynamics. In the limit of
strong magetic field (large m) the dot becomes more a ”two-dimensional” system. This explains
the improvement of the accuracy of the plain quantum-mechanical averaging procedures at large
m, i.e., for the ground states at high magnetic fields.

5. Summary
We demonstrated that the confinement in the z direction is important ingredient for the
quantitative analysis of the experimental data for two-electron axially symmetric vertical QDs.
Quantum spectra of such QDs exhibit hidden symmetries at certain values of the magnetic
field. This fact has been overlooked in a plain quantum-mechanical models. The onset of the
symmetries, for example, at ω′′L leads to a singlet-triplet degeneracy which should increase the
conductance at this value of the magnetic field. We developed the effective charge approach
taking full account of the thickness of two-electron QDs. Using the adiabatic approximation,
based on action-angle variables, we have derived the analytical expression for the screening which
facilitates the numerical calculations.
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