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Abstract. Complex potentials are constructed as Darboux-deformations of short range, radial
nonsingular potentials. They behave as optical devices which both refracts and absorbs light
waves. The deformation preserves the initial spectrum of energies and it is implemented by
means of a Gamow-Siegert function (resonance state). As straightforward example, the method
is applied to the radial square well. Analytical derivations of the involved resonances show that
they are ‘quantized’ while the corresponding wave-functions are shown to behave as bounded
states under the broken of parity symmetry of the related one-dimensional problem.

1. Introduction

Solutions of the Schrödinger equation associated to complex eigenvalues ε = Eα and satisfying
purely outgoing conditions are known as Gamow-Siegert functions [1, 2]. These solutions
represent a special case of scattering states for which the ‘capture’ of the incident wave produces
delays in the scattered wave. The ‘time of capture’ can be connected with the lifetime of a
decaying system (resonance state) which is composed by the scatterer and the incident wave.
Then, it is usual to take Re(ε) as the binding energy of the composite while Im(ε) corresponds to
the inverse of its lifetime. The Gamow-Siegert functions are not admissible as physical solutions
into the mathematical structure of Quantum Mechanics since, in contrast with conventional
scattering wave-functions, they are not finite at r → ∞. Thus, such a kind of functions is
acceptable in Quantum Mechanics only as a convenient model to solve scattering equations.
However, because of the resonance states relevance, some approaches extend the formalism of
quantum theory so that they can be defined in a precise form [3–9].

In this paper the Gamow-Siegert functions are analyzed not to precisely represent
decaying systems but to be used as the cornerstone of complex Darboux-transformations in
Supersymmetric Quantum Mechanics (Susy-QM). The ‘unphysical’ behaviour of these solutions
plays a relevant role in the transformation: While the Gamow-Siegert function u diverges at
r → ∞, the limit of its logarithmic derivative β = −u′/u at r → ∞ is a complex constant.
This last function is used to deform the initial potential into a complex function. It is worth
noticing that complex eigenvalues ε have been used as factorization constants in Susy-QM (see
for instance [10–18] and the discussion on ‘atypical models’ in [19]). However, as far as we know,
until the recent results reported in [20–22] the connection between Susy-QM and resonance
states has been missing. Our interest in the present work is two-fold. First, we want to show
that appropriate approximations lead to analytical expressions for the real and imaginary parts
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of the resonance energies in the case of radial short range potentials. Second, we want to enlarge
the number of applications of the Darboux transformations in constructing new exactly solvable
models in Quantum Mechanics.

In Section 2 the main aspects of solving the Schrödinger equation for radial, nonsingular
short range potentials are reviewed. The relevance of the scattering amplitude S(k) in the
analysis of both the bounded and scattering wave-functions is clearly stated. In Section 3 the
analytical properties of S(k) as a function of the complex kinetic parameter k are studied. It is
shown that poles of the scattering amplitude which live in the lower k–plane are connected with
the Gamow-Siegert functions while the poles on the positive imaginary axis lead to bounded
physical energies. The general aspects of the complex Darboux-transformations are included in
Section 4. All the previous developments are then applied to the square radial well and new
analytical expressions for the involved resonance energies are reported in Section 5. We conclude
the paper with some concluding remarks in Section 6.

2. Short range radial potentials revisited
2.1. General considerations

Let us consider the Hamiltonian of one particle in the external, spherically symmetric field
U(~r) = U(r). The Schrödinger equation reduces to the eigenvalue problem:

Hψ(~r) ≡
(
− ~

2

2m
∆ + U(r)

)
ψ(~r) = Eψ(~r). (1)

We are interested in potentials which decrease more rapidly than 1/r at large r. Indeed, U(r)
is a short-range potential (i.e., there exists a ∈ Dom(U) := DU such that U(r) = 0 at r > a)
which is nonsingular (i.e., U(r) satisfies r2U(r) → 0 at r → 0). The wave function ψ(~r) must be
single-valued and continuous everywhere in DU . Since the operators H, L2, L3 and P commute
with each other, in spherical coordinates the Schrödinger equation (1) has solutions of the form

ψ`m(~r) = R`(r)Y`m(θ, ϕ) (2)

where θ and ϕ are respectively the polar and the azimuthal angles, R`(r) is a function depending
on r and Y`m(θ, ϕ) stands for the spherical harmonics. For simplicity in calculations we shall
use the function u`(r) = rR`(r). The introduction of (2) into equation (1) yields:

[
− d2

dr2
+

`(` + 1)
r2

+ v(r)
]

u`(r) :=
[
− d2

dr2
+ V`(r)

]
u`(r) = k2u`(r) (3)

with v = 2mU/~2 and k2 = E ≡ 2mE/~2 the dimensionless expressions for the potential and
the kinetic parameter respectively. As usual, the effective potential V` is defined as the potential
v plus the centrifugal barrier `(` + 1)/r2. Physical solutions ψ(~r) of (1) should be constructed
with functions u` fulfilling the following boundary conditions:





u`(r) = 0 r → 0

u`(r)
r < ∞ r →∞

(4)

Furthermore, the function u` and its derivative u′` have to be continuous for r > 0 since (3)
includes second order derivatives. As we shall see, the study of the involved matching conditions
is simplified by introducing a function β` as follows

β`(r) := −u′`(r)
u`(r)

= − d

dr
ln u`(r). (5)
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In general we will assume that the energy spectrum is composed by negative (bounded) and
positive (scattering) energies. For the sake of notation we shall use the symbol φ`(r) for the
solutions of (3) which satisfy the boundary conditions (4); the symbol u`(r) will stand for general
mathematical solutions of equation (3).

2.2. Bases of solutions

For arbitrary ` and r > a, the appropriate basis of solutions can be written in the form

u
(+)
` (r) = ikr h

(1)
` (kr), u

(−)
` (r) = −ikr h

(2)
` (kr) (6)

where h
(1)
ν and h

(2)
ν are the spherical Hänkel functions of order ν = ` (see e.g. [23]). For large

values of kr in the region r > a, the functions (6) behave as follows

u
(±)
` (r) ≈ exp

[
±i

(
kr − `π

2

)]
. (7)

Thereby, u
(+)
` represents a diverging wave and describes particles moving with speed ϑ = k in all

directions from the origin. In turn, the function u
(−)
` represents a converging wave and describes

particles moving with speed ϑ towards the origin.
It is worth noticing that the Schrödinger equation (3) is invariant under the change k → −k.

Hence, if u`(r, k) is solution of (3) for E = k2, then u`(r,−k) is also a solution for the same
energy. However, these last functions must differ at most in a constant factor because the
solutions of (3) have to be single-valued. In contrast, up to a global phase, they interchange
their roles at r →∞, as indicated by the relationship

u
(±)
` (r, k) = eiπ` u

(∓)
` (r,−k), r →∞. (8)

On the other hand, the basis of solutions at r < a may be written

u
(1)
` (r) =

2` + 1
Λ`

kr j`(kr), u
(2)
` (r) = −Λ` kr n`(kr), Λ` :=

2−`√π

Γ(` + 1/2)
(9)

where j` and n` are respectively the spherical Bessel and Neumann functions of order `. For
very small values of r we have

u
(1)
` (r → 0) ≈ (kr)`+1, u

(2)
` (r → 0) ≈ 1

(kr)`
. (10)

2.2.1. Bounded states. Imaginary values of the kinetic parameter k = ±i
√
|E| ≡ ±iκ

correspond to negative values of the energy E = k2 = −κ2. As usual, we shall consider k

to be in the upper complex k–plane I+. In this way u
(−)
` (r, κ) does not satisfy the boundary

condition at r → ∞ and u
(2)
` (r, κ) does not fulfill the boundary condition at r = 0. Hence, the

physical solutions should be constructed with u
(1)
` (r, κ) and u

(+)
` (r, κ). We write:

φ`(r, κ) =





ζ`(κ)u
(1)
` (r, κ) g`(r, κ) r < R

ξ`(κ) u
(+)
` (r, κ) r ≥ R

(11)

where the intermediary function g`(r, κ) is equal to 1 at r = 0 and depends on the potential.
The coefficients ζ`(κ) and ξ`(κ) are complex numbers while the matching condition β`(a, κ) = κ
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corresponds to a transcendental equation which is fulfilled for a set of discrete values of the
kinetic parameter κn, n = 0, 1, 2, . . . Under these conditions the functions φ`(r, κn) are finite
and the integral ∫ +∞

0
|φ`(r, κn)|2dr (12)

converges. Thereby, |φ`(r, κn)|2 can be identified as the involved Born’s probability density.

2.2.2. Scattering states. Positive energies E = k2 correspond to real values of k and both
solutions (7) remain finite in r ≥ a. As a consequence, both of them are physically acceptable
in this region. To analyze these solutions first let us consider the case ` = 0 and, for the sake of
simplicity, let us drop this subindex from the functions u`(r). The general solution in the free
of interaction zone (r > a) may be written as

uout(r) = γ(k)
[
u(−)(r)− S(k)u(+)(r)

]
. (13)

The constant γ(k) is the amplitude of the converging wave and does not depend on the potential
v(r). The scattering amplitude S(k), in contrast, strongly depends on the potential and encodes
the information of the scattering phenomenon. The matching condition between uout(r) and the
solution uin(r) in the interaction zone reads

βout(a) = βin(a) (14)

and can be satisfied by appropriate values of γ and S. Indeed, equation (14) is equivalent to
the following matrix array

(
uin u(+)

u′in u′(+)

)∣∣∣∣∣
r=a

(
γ−1

S

)
=

(
u(−)

u′(−)

)∣∣∣∣∣
r=a

(15)

the solution of which is given by the system of equations

γ =
W

(
uin, u

(+)
)

2ik

∣∣∣∣∣
r=a

, S =
W

(
uin, u

(−)
)

W
(
uin, u(+)

)
∣∣∣∣∣
r=a

, (16)

where W (·, ·) stands for the Wronskian of the involved functions.
To get a better idea of the roles played by each one of the terms in equation (13) let us

consider the free motion (v(r) = 0) in the whole of Dv. From equations (6) and (9) we realize
that a regular solution at the origin may be written as follows

ufree(r) ≡ u(−)(r)− u(+)(r) = −2ikr j0(kr) = −2i sin(kr). (17)

This term can be introduced into equation (13) to get

uout(r) = γ(k)
[
ufree(r)− (S(k)− 1)u(+)(r)

]
. (18)

Thus, the total wave function after scattering uout is given by the wavepacket one would have
if there were no scattering γufree plus a scattered term −γ(S − 1)u(+). This last example shows
the important role played by the scattering amplitude in the analysis of positive energies.

On the other hand, the potential we are dealing with is neither a sink nor a source of particles,
then the condition |S(k)| = 1 (elastic scattering) is true and we have

S(k) = e2iδ(k). (19)
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The scattering phase δ(k) represents the difference in phase of the outgoing parts. The situation
is clear if one introduces (17) and (19) into equation (18) to get

uout(r →∞) = −2iγ(k) eiδ(k) sin(kr + δ). (20)

As we have indicated, the scattering states include k ∈ R since E > 0. However, the function
(13) is also valid if k is one of the imaginary values of the kinetic parameter leading to the
bounded energies En = −κ2

n. Indeed, this case provides further information about the scattering
amplitude. For kn = iκn, the function (13) at r →∞ reads

uout(r →∞, κn) ∼ −2iγ(iκn)
[
eκnr − S(iκn)e−κnr

]
. (21)

The first term in square brackets never vanishes (κn > 0), then the coefficient S must be
singular at the complex point kn = iκn. In other words, the points kn are nothing but poles of
the scattering amplitude. Since these points are in the upper complex k–plane I+, we realize
that S(k) is a regular function in I+ except at kn, n = 0, 1, 2, . . . We shall use these results in
the next sections.

Finally, similar expressions can be found for arbitrary azimuthal quantum numbers `. A
straightforward calculation gives

u`(r) = γ`(k)
(
u

(−)
` (r)− S`(k)u(+)

` (r)
)

, r > a (22)

the asymptotic behaviour of which reads

u`(r →∞) ≈ −2iγ`(k)eiδ`(k) sin
(

kr + δ`(k)− `π

2

)
. (23)

The above discussed properties of the scattering amplitude S(k) are easily generalized to the
case of arbitrary angular momentum S`(k).

3. Gamow-Siegert functions
3.1. Analytic continuation of the scattering amplitude S`(k)

In the previous section we realized that S` is a regular function in I+ except at the points k = iκ
leading to bound states of the energy. In order to get a well behaved scattering amplitude in
the whole of the complex k–plane, this function must be extended to be analytic in I−. With
this aim, first let us construct an arbitrary linear combination of the functions (7), it reads

u`(r) = ζ`(k) u
(−)
` (r)− ξ`(k) u

(+)
` (r) ≡ ζ`(k)

[
u

(−)
` (r)− S`(k)u(+)

` (r)
]
. (24)

This function is regular at the origin if u`(r = 0) = 0, then we arrive at the following relationship

S`(k) =
ξ`(k)
ζ`(k)

=
u

(−)
` (r)

u
(+)
` (r)

∣∣∣∣∣
r=0

. (25)

Now, after a change of sign in k, the coefficients of the single-valued function (24) should satisfy

−eiπ`ξ`(−k) = αζ`(k), eiπ`ζ`(−k) = −αξ`(k) (26)

where α is a proportionality factor and we have used equation (8). In this way, the expression
(25) leads to

S`(k) S`(−k) = 1. (27)
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kα = ki−kα = −ki

kα = ki−kα = −ki

iκn

Figure 1. Schematic representation of the poles (disks) and the zeros (circles) of the scattering
amplitude S`(k) in the complex k–plane. Bounded energies En = −κ2

n correspond to the poles located
on the positive imaginary axis.

Let ki ∈ I+ be a zero of S`. From equation (27) we notice that the scattering amplitude is well
behaved in I− except at the point −ki, for which S`(−ki) →∞. Thus, −ki ∈ I− is a pole of S`.

On the other hand, if the kinetic parameter k is real, then the complex conjugate of any solution
of equation (3) is also a solution for the same energy. However, the solution is unique so these
last functions differ at most in a global phase. Thereby, in a similar form as in the previous
case, we get

S`(k)S`(k) = 1 (28)

where the bar stands for complex conjugation. This last equation is a consequence of the elastic
scattering we are dealing with since |S`(k)| = 1. However, as k is real, also equation (28) has to
be extended to the whole of the complex k–plane. The natural condition reads

S`(k)S`(k) = 1. (29)

It is clear that S`(ki) diverges because ki ∈ I+ is a zero of S`. In other words, ki ∈ I− is a pole
of S` since |S`(ki)| → ∞. Moreover, as −ki is a pole of S`, from equation (29) we also notice
that S`(−ki) = 0. Thus, −ki is another zero of the scattering amplitude. In summary, if kα (ki)
is a pole (zero) of S`, then −kα (−ki) is another pole (zero) while kα and −kα (ki and −ki) are
zeros (poles) of the scattering amplitude. In this way S`(k) is a meromorphic function of the
complex kinetic parameter k, with poles restricted to the positive imaginary axis (bound states)
and to the lower half-plane I− (see Figure 1).

3.2. Resonance states

Let us express one of the poles of the scattering amplitude as kα = α1−iα2, with α1 an arbitrary
real number and α2 > 0. The function (22), evaluated for kα at r →∞ reads

u`(r →∞, kα) ≈ γ`(kα)e−i(α1r−`π/2)
[
e−α2r − S`(kα)eα2r

]
. (30)

Observe that the first term in brackets vanishes for large values of −α2r. Hence, there remains
only the scattering, purely outgoing wave eα2r. As a consequence, the particle is maximally
scattered by the potential field v(r) and the wave function is not “well behaved” since it does
not fulfill the boundary condition at r → ∞. However, as we have seen, this last “unphysical
behaviour” is not only natural but necessary to study the elastic scattering process of a particle
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by a short range, nonsingular radial field interaction. Wave functions behaving like (30) are
known as Gamow-Siegert solutions of the Schrödinger equation (3). We write

u
(GS)
` (r) =





θ` g`(r, kα) u
(1)
` (kαr) r < R

−γ`(kα)S`(kα)u(+)
` (r, kα) R ≤ r

(31)

where θ` is a constant and the intermediary function g`(r, kα) is equal to 1 at r = 0 and depends
on the potential. Besides the matching condition (16), the Gamow-Siegert functions fulfill the
purely outgoing boundary condition:

lim
r→+∞

{
β

(GS)
` (r) + ikα

}
= 0. (32)

Our interest is now addressed to the Gamow-Siegert functions not precisely as describing a
decaying system but as appropriate mathematical tools to study the construction of complex
Darboux-deformed potentials.

4. Complex-Darboux deformations of radial potentials
4.1. General considerations

In order to throw further light on the function β`(r) we may note that (5) transforms the
Schrödinger equation (3) into a Riccati one

−β′`(r) + β2
` (r) + ε` = V`(r) (33)

where the energy k2 has been changed for the arbitrary number ε`. Remark that (33) is not
invariant under a change in the sign of the function beta:

β′`(r) + β2
` (r) + ε` = V`(r) + 2β′`(r). (34)

These last equations define a Darboux transformation Ṽ`(r) ≡ Ṽ`(r, ε`) of the initial potential
V`(r). If ε` is a nontrivial complex number, then the Darboux-deformation is necessarily a
complex function

Ṽ`(r) = V`(r) + 2β′`(r) ≡ V`(r)− 2
d2

dr2
lnϕε(r) (35)

where the transformation function u`(r, ε) ≡ ϕε(r) is the general solution of (3) for the complex
eigenvalue ε`. The solutions y`(r) = y`(r, ε`, E) of the non-Hermitian Schrödinger equation

−y′′` (r) + Ṽ`(r) y`(r) = Ey`(r) (36)

are easily obtained

y`(r) ∝ W(ϕε(r), u`(r))
ϕε(r)

, (37)

where u`(r) is eigensolution of equation (3) with eigenvalue E .
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4.2. New exactly solvable optical potentials

Let the transformation function ϕε(r) be a Gamow-Siegert function (31). The superpotential
β

(GS)
` (r, kα) and the new potential Ṽ`(r) behave at the edges of Dv as follows

β
(GS)
` (r, kα) =

{
− `+1

r r → 0

−ikα r → +∞ ⇒ Ṽ`(r) =

{
V`+1(r) r → 0

V`(r) r → +∞ (38)

It is remarkable that even for an initial potential with ` = 0 the corresponding Darboux-
deformation contains a nontrivial centrifugal term in the interaction zone r < a. Notice also
that the new potential is mainly a real function at the edges of Dv. Thus, the function Im(Ṽ`)
is zero at the origin and vanishes at r → +∞. In general Im(Ṽ`) oscillates along the whole of
(0, +∞) according with the level of excitation of the Gamow-Siegert solution u

(GS)
` (r, kα): The

higher the level of excitation the greater the number of oscillations. Such a behaviour implies a
series of maxima and minima in Im(Ṽ`) which can be analyzed in terms of the optical bench [19].

As regards the physical solutions of the new potential it is immediate to verify that, in all
cases (bounded and scattering states of the initial potential), the corresponding transformations
fulfill the boundary condition at r = 0. The analysis of the behaviour at r →∞ is as follows.

4.2.1. Scattering states. Let u`(r) be a scattering state of the initial potential in r > a. At
r → +∞, the corresponding Darboux-Deformation (37) behaves as follows

lim
r→+∞ y`(r) = −iγ`(k)

[
(kα + k)u(−)(r)− (kα − k)S`(k)u(+)(r)

]
r→+∞

(39)

where we have used equation (22). As we can see, the Darboux-deformations of u` behave as
scattering states at r > a.

If the scattering state u`(r) is a Gamow-Siegert function and k 6= kα, kα,−kα,−kα, the
Darboux-deformation preserves the purely outgoing condition (32). Special cases are:

(i) k = kα ⇒ the Wronskian in (37) is zero and there is no transformation.
(ii) k = kα ⇒ S`(kα) = 0, then y`(r) is an exponentially decreasing function.
(iii) k = −kα ⇒ S`(−kα) = 0 and the coefficient of u(−)(r) vanishes, then y`(r) = 0.
(iv) k = −kα ⇒ S`(−kα) →∞, then y`(r) fulfills the purely outgoing condition (32).

4.2.2. Bounded states. If I+ 3 k = iκ = i
√
|E| the function u`(r,

√
|E|) corresponds to one of

the bounded states (11). Thereby, from equation (37) we get

lim
r→+∞ y`(r,

√
|E|) ≈ (ikα −

√
|E|) ξ`(

√
|E|) e−i `π

2 e−
√
|E| r. (40)

Thus, the Darboux-deformations of bounded wave-functions vanishes at r → ∞. However,
although this new functions are square-integrable, they do not form an orthogonal set in the
Hilbert space spanned by the initial square-integrable wave-functions [14] (see also [24] and the
‘puzzles’ with self orthogonal states [25]).

In the next section we are going to solve the Schrödinger equation for the radial square well.
We shall get the solutions corresponding to complex energy eigenvalues and purely outgoing
boundary conditions. Thus, we shall construct the involved Gamow-Siegert functions.
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5. Gamow-Siegert states of the radial square well

Let us consider the potential

v(r) =

{ −v0 r < a

0 a ≤ r
(41)

with a and v0 positive real numbers. The regular solution of the Schrödinger equation (3) for
this potential may be written

u`(r) =





θqr j`(qr) r < a

−iγ`(k) kr
[
h

(2)
` (kr) + S`(k)h(1)

` (kr)
]

a ≤ r
(42)

where the interaction parameter q is defined by q2 = v0 + k2. For simplicity, we shall analyze
the s-wave solutions (` = 0) for which the matching conditions (16) lead to

S(q) = −
[
ik sin(qa) + q cos(qa)
ik sin(qa)− q cos(qa)

]
e−2ika, γ(k) = −θeika

2ik
[ik sin(qa)− q cos(qa)]. (43)

Let us take θ = 2ik. The scattering amplitude S(k) has zeros and poles which respectively
correspond to the roots of the transcendental equations

iq

k
= tan(qa), − iq

k
= tan(qa). (44)

Indeed, equations (44) correspond to the even and odd quantization conditions for negative
energies if k = iκ ∈ I+, just as it has been discussed in the previous sections. However, we are
looking for points kα in the complex k–plane such that Re(kα) 6= 0 and Im(kα) 6= 0. Thereby, if
kα is a pole of S, the converging wave in (42) vanishes. Then the Gamow-Siegert function reads

u
(GS)
`=0 (r) =

{
2ikα sin[q(kα)r] r < a

2ikα sin[q(kα)a] eikα(r−a) a ≤ r
(45)

In order to solve the second equation in (44) let us rewrite the scattering amplitude as

S(k) = −
[
e2iqa(k + q) + (q − k)
e2iqa(k − q)− (q + k)

]
e−2ika. (46)

In this way, the poles of S are also the solutions of the transcendental equation

e2iqa =
|k|2 − |q|2 + 2Re(kq)

|k − q|2 . (47)

If the interaction parameter q is real, then sin(2qa) = 0 and we obtain the following quantization
rule for the energy

qn =
πn

2a
⇒ En =

(nπ

2a

)2
− v0, n = 0, 1, . . . (48)

On the other hand, let k and q be the complex numbers k = K1 + iK2 and q = Q1 + iQ2. Then
q2 = v0 + ε = (v0 + ε1) + iε2, with ε = k2. Hence we have

Q2
1 −Q2

2 = v0 + ε1, 2Q1Q2 = ε2 (49)
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and
K2

1 −K2
2 = ε1, 2K1K2 = ε2. (50)

The imaginary part of equation (47) is sin(2Q1a) = 0 and we obtain the following quantization
rule

Q1,n =
πn

2a
, n = 0, 1, . . . (51)

Therefore, if |Q2| << 1, the first equation in (49) shows that equation (51) leads to ε1 ≈ En.
The second equation in (49), on the other hand, gives a value of ε2 which is not necessarily equal
to zero. In this way, we shall study the poles of S for which the complex points ε are such that
Re(ε) ≈ En and Im(ε) ≈ −Γ

2 , with 0 < Γ << 1. The main problem is then to approximate
the adequate value of Γ as connected with the discreteness of Q1 in (51). With this aim, for a
given finite value of a we take |Q2|a << 1. A straightforward calculation shows that the second
equation in (44) uncouples into the system

Q1 =
√

v0 sin(Q1a) cosh(Q2a), Q2 =
√

v0 cos(Q1a) sinh(Q2a). (52)

In turn, the second one of these last equations reduces to

cos(Q1a) ≈ 1
a
√

v0
=

1
η
. (53)

Now, let |δ| << 1 be a correction of Q1 around the quantized values (51), that is Q1a ≈ Q1,na+δ.
Then, equation (53) leads to

δn = −sin(πn/2)
η

, n odd. (54)

Thus, only odd values of n are allowed into the approximation we are dealing with. Now, to
ensure small values of Q2 we propose Q2a =

∑+∞
m=1 λm/ηm. From (49) we have

ε1
v0
≈ −1 +

(
aQ1,n

η

)2

− 2aQ1,n sin(πn/2)
η3

+
1− λ2

1

η4
− 2λ1λ2

η5
− · · · (55)

In order to cancel the term including η−4 we take λ1 = ±1 (the appropriate sign will be fixed
below). Higher exponents in the power of 1/η are dropped by taking λm>1 = 0. In order to get
ε1 → En, after introducing (51) into (55), we realize that the condition η >> 1 allows us to drop
the term including η−3. Thus, at the first order in the approximation of Q2a we get ε1 ≈ En.

It is also necessary to have regard to the positiveness of energy ε1, which is ensured whenever
n exceeds a minimum value. Let us take n := ninf +m, m ∈ Z+, where ninf is the ceiling function
of 2η/π, i.e. ninf =

⌈
2η
π

⌉
=

⌈
2a
√

v0

π

⌉
. Since n is odd, the integer m is even (odd) if ninf is odd

(even). We finally arrive at

Re(ε) ≈
([

(ninf + m)π
2a
√

v0

]2

− 1

)
v0, m =

{
0, 2, 4, . . . ninf odd

1, 3, 5, . . . ninf even
(56)

On the other hand, it is worth noticing that the introduction of Q2a = ±1/η and (54) into
the second equation in (49) leads to the conclusion that Q2a = +1/η has to be dropped. The
expression for the imaginary part of the complex energy ε is calculated as follows. First, let us
rewrite equations (52) in the form

K1 = ±√v0 sin(Q1a) sinh(Q2a), K2 = ±√v0 cos(Q1a) cosh(Q2a). (57)
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Since ε2 = −Γ/2, from equations (50) we realize that the sign of K1 must be the opposite one
of K2. The introduction of (53) into the second equation in (57) leads to

K2 ≈ ±1
a

(
1 +

1
2η2

)
(58)

where we have used Q2a ≈ −1/η. If η >> 1 we get aK2 ≈ ±1. Then, this last result together
with the real part of the factorization constant ε gives

K2
1 = ε1 + K2

2 ≈ ε1 +
1
a2

. (59)

Thus, for a2ε1 > 1 we obtain K1 ≈ ±√ε1. Finally, the introduction of (58) and (59) into the
second equation of (50) produces

Im(ε) = −Γ
2
≡ −2|K1| |K2| ≈ −2

a

√
Re(ε). (60)

In Figure 2 we show the absolute value of the scattering amplitude close to one of its poles kα

and the corresponding zero k̄α. Some of the first resonances are reported in Table 1 for different
values of the potential strength v0 and the cutoff a.
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2.075
    

ReHkL
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0
0.1

ImHkL

0

1

2

ÈSHkLÈ

0

1

2

Figure 2. The absolute value of the scattering amplitude S(k) close to the pole kα (and the zero k̄α)
which corresponds to the first resonance Eα = k2

α of the square well reported in Table 1 for ninf = 64.
The limits of our approach give the number kα = 2.063412− i 0.099882.

5.1. Complex Darboux-deformations of the radial square well

Figure 3 shows the global behaviour of a typical Gamow-Siegert function associated with the
radial square well. Notice the exponential growing of the amplitude for r > a. This kind of
solutions are used in (35) to complex Darboux-deform the square well as it is shown in Figure 4.

The cardiod-like behaviour seems to be a profile of the complex potentials derived by means
of Darboux-deformations (compare with [20] and [22]). In this case, the complex potential shows
concentric cardiod curves for values of r inside the interaction zone, one of them is shown at the
left of Figure 4. The real and imaginary parts of Ṽ`(r) are then characterized by oscillations and
changes of sign depending on the position in r < a. As a consequence, these complex potentials
behave as an optical device which both refracts and absorbs light waves (see details in [22] and
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Figure 3. The real (left) and imaginary (right) parts of the Gamow-Siegert function (45) associated
with the first resonance state reported in Table 1 for ninf = 64.

discussions on the optical bench in [19]). The presence of this kind of oscillations is also noted
at distances slightly greater than the cutoff r = a. Hence, the complex Darboux-deformations
(35) are short range potentials which enlarge the initial ‘interaction zone’ as it is shown in the
right part of Figure 4.
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Figure 4. The Argand-Wessel diagram of the complex Darboux-deformed square well with v0 = 100
and a = 10. Left: Detail of the cardiod-like behaviour of the new potential between r = 9.8 (disk) and
r = 10 (circle). Right: The disk is evaluated at r = 10.1 and the circle at r = 13. As complementary
information: Ṽ0(r = 10) = 100.2255− i 0.8076 and Ṽ0(r = 10.1) = −0.1157− i 0.8306.

Table 1. The first four resonance energies for the radial square well of intensity v0 = 100 and cutoff
a = 10 (ninf = 64) and for the radial square well of intensity v0 = 1000 and cutoff a = 10 (ninf = 202).
Notice that, in each case, the even values of m obtained for the related one-dimensional problem are
missing (see e.g. Table A.1 of reference [22]).

ninf = 64 ninf = 202

m = 1 04.247696− i 0.412198 16.791319− i 0.819544
m = 3 10.761635− i 0.656098 36.925312− i 1.215324
m = 5 17.472966− i 0.836013 57.256697− i 1.513363
m = 7 24.381689− i 0.987556 77.785474− i 1.763921

6. Concluding remarks

We have studied the elastic scattering process of a particle by short range, nonsingular radial
field interactions. The poles of the involved scattering amplitude S(k) play a relevant role
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in the construction of physical solutions connected with either bounded or scattering states
of the energy. It has been shown that poles kα in the lower half complex k–plane lead to
the “unphysical” Gamow-Siegert functions which are necessary to depict the behaviour of the
scattering phenomenon.

The Gamow-Siegert functions were used to transform the radial short range potentials into
complex ones which preserve the initial energy spectrum. These new potentials are ‘opaque’ in
the sense that they simultaneously emit and absorb flux, just as an optical device which both
refracts and absorbs light waves. The transformation preserves the square-integrability of the
solutions at the cost of producing non-orthogonal sets of wave-functions. It is also notable that
scattering states are transformed into scattering states while deformed Gamow-Siegert functions
can be either a new Gamow-Siegert function or an exponentially decreasing function depending
on the involved kinetic parameter k and the pole kα.

The method has been applied to the radial square well in the context of s-waves (` = 0).
Analytical expressions were derived for the corresponding complex energies in the long lifetime
limit (i.e., for small values of |Im(Eα)| = Γ/2) and, as a consequence, such energies fulfill a
‘quantization rule’. In contrast with the ‘even’ and ‘odd’ resonances of short range potentials
defined in the whole of the straight-line (see e.g. [22]), the resonances of radial short range
potentials are labelled by only odd (positive) integers. This result enforces the interpretation
of Gamow-Siegert functions as representing quasi-bounded states: The bounded spectrum of a
potential which is invariant under the action of the parity operator v(x) = v(−x) includes odd
and even functions. The symmetry is broken by adding an impenetrable wall at the negative
part of the straight line and only the odd solutions are preserved. As we have shown, the same
is true for resonance states.

Finally, the results reported in this paper are complementary to our previous work [22]. It
is remarkable that explicit derivations of Gamow-Siegert functions are barely reported in the
literature, not even for simple models like those studied here (however see [5,20,21,26–29]). We
hope our approach has shed some light onto the solving of the Schrödinger equation for complex
energies and functions fulfilling the purely outgoing boundary condition.
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[21] Fernández-Garćıa N 2007 Rev Mex Fis 53 Suppl 4 42
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