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Abstract. NDE examination of industrial structures requires the modelling of specimen
geometry echoes generated by the surfaces (entry, backwall. . .) of inspected blocks. For that
purpose, the study of plane elastic wave diffraction by a wedge is of great interest since surfaces
of complex industrial specimen often include dihedral corners. There exist various approaches
for modelling the plane elastic wave diffraction by a wedge but for the moment, the theoretical
and numerical aspects of these methods have only been developed for wedge angles lower than
π. Croisille and Lebeau [1] have introduced a resolution method called the Spectral Functions
method in the case of an immersed elastic wedge of angle less than π. Kamotski and Lebeau
[2] have then proven existence and uniqueness of the solution derived from this method to the
diffraction problem of stress-free wedges embedded in an elastic medium. The advantages of this
method are its validity for wedge angles greater than π and its adaptability to more complex
cases. The methodology of Croisille and Lebeau [1] has been first extended by the authors of
the current communication to the simpler case of an immersed soft wedge [3]. The outline of
their methodology is presented here and an application to the case of longitudinal incident and
scattered waves in the case of the acoustic limit of the elastic code is presented.

1. Introduction
Ultrasonic inspection of a specimen generates echoes from the entry and backwall surfaces of this
specimen. If these surfaces contain wedges, it is then necessary to provide a correct model of the
interaction between the ultrasonic beam and these wedges. These interactions may be linked to
two different phenomena : reflection from the wedge faces and diffraction of the incident rays
by the wedge edge. Both must be correctly taken into account by the model.

Abrahams has studied the problem of elastic wave diffraction by a half-space [4] and by a
crack [5], but this work does not include the specific problem of wedge diffraction. A study
of the existing models for the problem of wedge diffraction shows that the specular model (a
ray-tracing method based on geometrical optics) developed by CEA/LIST and partners in the
NDT simulation platform CIVA [6] is much faster than other numerical models (finite elements
or finite differences for example). However, it computes reflection but not diffraction. Based
on the Physical Theory of Diffraction (PTD) introduced by Ufmitsev [7], an ultrasonic system
model has been developed for a half-plane by Zernov et al. [8] and extended to mimic ultrasonics

http://creativecommons.org/licenses/by/3.0
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with some head waves [9, 10]. Nevertheless, this ultrasonic PTD model can be time consuming
for large specimen surfaces. A second solution to this problem, called the Uniform Theory of
Diffraction (UTD) was proposed in elastodynamics by Kamta Djakou et al. [11] and developed
for a half-plane scatterer. It combines the specular model with a diffraction model. Our future
idea is to extend UTD to the wedge case, which needs the development of a robust wedge
diffraction model.

To apply the aforementioned UTD method, a generic and trustworthy wedge diffraction model
is necessary. Such models, such as the Laplace Transform (LT) method or the Sommerfeld
Integral (SI) method, have been developed. The LT method was originally developed by
Gautesen for elastic quarter-spaces [12, 13] and later extended to the case of a scattered Rayleigh
wave [14, 15] for wedge angles smaller and greater than π. However the range of the wedge angle
was restricted to the range [63o, 180o] for angles smaller than π and to [189o, 327o] for angles
greater than π in order to avoid numerical instabilities. The SI method was first introduced
for the case of an incident Rayleigh wave by Budaev and Bogy [16] and clarified by Kamotski
et al. [17]. Both these methods have been extended by Gautesen and Fradkin [18] to the case
of an elastic incident wave (not necessarily a Rayleigh wave) on a stress-free wedge, but only
for wedge angles lower than π. In addition, they are not valid for 3D configurations, for which
the incident wave vector is not necessarily in the plane normal to the edge, and have only been
developed for stress-free wedges.

The spectral functions method for diffraction by a wedge presents numerous advantages.
First, it works for all wedge angles (and notably for angles higher than π). Secondly, it requires
a very short computation time. It is a generic method adaptable to much more complex cases
such as 3D configurations or various types of media (impedant wedges for instance). It was
originally developed by Croisille and Lebeau [1] and applied to an immersed elastic wedge. The
methodology was extended to the case of a stress-free wedge embedded in an elastic solid by
Kamotski and Lebeau [2] but the numerical aspects and the final solution were not dealt with.
The study of further configurations is to come and an article concerning the case of a stress-free
wedge in acoustics has been submitted [3].

The following paper begins by presenting the problem and defining the diffraction coefficient.
Section 3 deals with defining the outgoing solution of the diffraction problem and finding an
integral formulation of this solution. This integral formulation is expressed in terms of two
unknown functions called the spectral functions. In section 4, a system of functional equations
solved by the spectral functions is determined. This system will be solved semi-analytically.
Section 5 presents some numerical results and section 6 gives the conclusions and perspectives
of this work.

2. Problem statement
Let us consider the diffraction problem of a plane longitudinal elastic wave uinc incident on a
wedge delimited by the stress-free infinite plane faces S1 and S2. the inside of the wedge is
defined by :

Ω = {(r cos θ, r sin θ)\θ ∈]0, ϕ[}
And the incident plane wave is of the form

uinc(x, t) = ALe
i(pincL ·x−ωt)

AL is the amplitude vector and pincL is the incident wave vector. The Cartesian coordinate
system (O; ex1 , ey1) is linked to the face S1 of the wedge and (O; ex2 , ey2) is linked to the face
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Figure 1: Plane wave incident on a stress-free wedge of angle ϕ

S2, as shown in figure 1. These Cartesian coordinate systems have the same origin located on
the wedge edge which coincides with the z-axis. Let x = (x1, y1)(ex1 ,ey1 ) = (x2, y2)(ex2 ,ey2 ) be

a position vector x = (r, θ) in a local basis of polar coordinates associated to the Cartesian
coordinates (x1, y1).

In the coordinate system (ex1 , ey1), the incident wave vector is given by :

pincL =
ω

cL

(
cos θinc
sin θinc

)
(1)

where cL =
√

(λ+ 2µ)/ρ is the velocity of the longitudinal waves and λ, µ are the Lamé

coefficients.

In the following, vectors are expressed in the coordinate system (O; ex1 , ey1), except when
explicitly stated otherwise. The displacement field u is then solution to the linear elasticity
problem for an isotropic homogeneous material and verifies stress-free boundary conditions on
S1 and S2. Bold letters will hereafter be reserved for matrices in order to simplify notations and
the harmonic time-factor e−iωt is omitted.

Let us suppose that the total field is the sum of the incident field and of an edge diffracted
field :

u = uinc + u0 (2)

The dimensionless problem is obtained by applying the following change in variables :

u0(x, y) = v

(
ω

cL
x,
ω

cL
y

)
(3)

The problem we wish to solve is now

(P∗)
{

(E + 1)v = 0 (Ω)
Bv = −BvincL (S1 ∪ S2)

(4)
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where E is the dimensionless elasticity operator and B is the normal stress operator (n being in
equation (5) the inward normal to each face of the wedge).

Ev = µ∆v + (λ+ µ)∇∇v
Bv = (λ∇v.I2 + 2µε(v)).n

(5)

The dimensionless Lamé coefficients are given by :

λ =
λ

ρc2
L

, µ =
µ

ρc2
L

and we have :

εij =
1

2
(
∂vi
∂xj

+
∂vj
∂xi

)

The dimensionless incident longitudinal wave is given by :

vincL (r, θ) =

(
cos θinc
sin θinc

)
eir cos(θ−θinc) , (6)

In the far field approximation (ωrcL >> 1, r being the distance of propagation, see figure 1), the
edge-diffracted longitudinal wave can be expressed as a cylindrical wave, proportional to the
incident wave, with 1√

r
spreading factor and weighted by a coefficient DL

L called the diffraction

coefficient which depends only on the direction of observation θ. The diffraction coefficient is
therefore defined by :

v(r cos θ, r sin θ) = DL
L(θ)

e−ir√
r
vincL (r cos θ, r sin θ) (7)

In order to obtain a far-field approximation of the longitudinal wave diffracted by a wedge
impinged by a longitudinal plane wave, it is sufficient to compute the diffraction coefficient,
defined by equation (7). The aim of the spectral functions method is to compute this coefficient.

3. Integral formulation of the solutions
Kamotski and Lebeau [2] have applied the spectral functions method to the case of a stress-free
elastic wedge. They have used the method to prove the existence and uniqueness of the outgoing
solution to the diffraction problem but have not computed or developed such a solution. In the
following, the main steps of their method and its application to the computation of the solution
are presented.

We begin by defining the double Fourier transform of a tempered distribution f and its inverse:

f̂(ξ, η) =

∫ ∫
R2

f(x, y)e−i(xξ+yη) dx dy (8a)

f(x, y) =
1

4π2

∫ ∫
R2

f̂(ξ, η)ei(xξ+yη) dξ dη (8b)

Following the formalism of Kamotski and Lebeau [2], the outgoing solution of the problem
(P∗), meaning the one which corresponds to the physical reality of the wedge diffraction problem
is the sum of two terms, v1 is the contribution due to face S1 and v2 is the contribution due to
face S2.

v = v1 + v2 (9)
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with

vj(xj , yj) =
1

4π2
lim
ε→0

∫ +∞

−∞
eixjξ

(∫ +∞

−∞
eiyjη(M(ξ, η)− e−2iεI2)−1 dη

)
Σj(ξ) dξ (10)

where Σj are unknown functions called the spectral functions

Σj(ξ) =

(
α̂j(ξ)

β̂j(ξ)

)
(11)

and the operator M is the Fourier transform of the operator E. The computation of the unknown
functions αj , βj ∈ L2(S) (more accurately of their Fourier transforms) will be treated in section
4.

The poles of (M(ξ, η)− e−2iεI2) are η = ±ζε∗(ξ), where

ζε∗(ξ) =
√
e−2iεν2

∗ − ξ2, (12)

and
νL = 1, νT =

cL
cT
, (13)

where cT =
√
µ/ρ is the velocity of the transversal waves. The square root is defined by choosing

the branch cut which is continuous on R and whose imaginary part is positive along the real
axis. The inner integral can be computed using Cauchy’s residue theorem.

This integral can be approached in the far-field approximation by using the stationary phase
method. By identifying the result of this approximation with equation (7), we can express the
longitudinal diffraction coefficient in terms of the spectral functions :

DL
L(θ) =

e−iπ/4

2
√

2π

(
Σ1

1(− cos θ) cos θ + Σ2
1(− cos θ) sin θ

+ Σ1
2(− cos(ϕ− θ)) cos(ϕ− θ) + Σ2

2(− cos(ϕ− θ)) sin(ϕ− θ)
)

(14)

We have defined the spectral functions and have given an expression of the diffraction
coefficient in terms of these functions. In the following section, we explain how these can be
computed semi-analytically.

4. Semi-analytical resolution
In order to compute the spectral functions there are two steps. The first one is to determine
a system of functional equations of which the spectral functions are solution. Then second is
to use this system to prove that the spectral functions can be decomposed into two parts : a
singular part and a regular part.

4.1. Functional equations
To determine a system of functional equations of which the spectral functions are solution, we
begin by injecting decomposition (9) into the wedge boundary conditions (4). The boundary
condition can be taken separately on each face and expressed using the corresponding coordinate
system : {

B
(
v1(x1, 0) + v2(x2 cosϕ, x2 sinϕ)

)
= −BvincL |S1

B
(
v2(x2, 0) + v1(x1 cosϕ, x1 sinϕ)

)
= −BvincL |S2

(15)

(v1
j , v

2
j ) are the coordinates of vj in the system (xj , yj).
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Thanks to this decomposition, two new operators can be defined. B1 is obtained by expressing
the normal stress operator on Sj in terms of (xj , yj). This expression of the normal stress
operator can then be projected onto the coordinate system (O; ex3−j , ey3−j ) and expressed in
terms of (x3−j , y3−j), yielding the operator B2. The system of boundary conditions can then be
written as : {

B1(v1) +B2(v2) = −BvincL |S1
B1(v2) +B2(v1) = −BvincL |S2

(16)

Let us now take the Fourier transform of (16). To do so, the partial derivative of (10) with
respect to x and y is computed for y = 0, x ≥ 0. The expressions of these partial derivatives can
then be inserted into B1. The Fourier transform is then applied to B1 :∫ +∞

0
e−ixξB1(v1)(x) dx =

1

2
DM(Σ1)(ξ)

=
1

2

∫
Γ0

DM(ξ, ζ)Σ1(ζ) dζ

(17)

with

DM(ξ, ζ) =
1

2iπ

1

ξ − ζ
dm(ζ)

=
1

2iπ

1

ξ − ζ

(
−1 A(ζ)
B(ζ) −1

) (18)

and

A(z) =
z

ζT (z)
(1− 2µQ(z))

B(z) = − z

ζL(z)
(1− 2µQ(z))

Q(z) = ζL(z)ζT (z) + z2

(19)

The contour Γ0 is represented in figure 2.

×
0

× ×
1 νT

××
−1−νT (Γ0)

Figure 2: Integration contour Γ0.

To compute the Fourier transform of operator the B2, a new translation operator must be
defined.

T∗(ξ = ν∗ cos z) = ζ cosϕ+ ζ∗(ζ) sin ϕ̃ = ν∗ cos(z + ϕ̃) (20)

where the following notation is used:

ϕ̃ =

{
ϕ if ϕ < π
2π − ϕ if ϕ ≥ π (21)

This translation operator is well defined on the following domain, represented in figure 3.

Ω+
∗ = {ξ = ν∗ cos z, 0 ≤ Rez < π − ϕ̃} (22)
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×
ν∗

×
−ν∗

− cos ϕ̃

Ω+
∗

Figure 3: Domain Ω+
∗

The Fourier transform of B2 is obtained in a similar manner as for B1. The partial derivative
of equation (10) with respect to x and y is computed this time for x′ = x cosϕ, y′ = x sinϕ.
The expressions of these partial derivatives are then inserted into B2. The Fourier transform is
finally applied to B2 : ∫ +∞

0
e−ixξB2(v2)(x) dx =

1

2
TM(Σ2)(ξ)

=
1

2

∫
Γ0

TM(ξ, ζ)Σ2(ζ) dζ

(23)

with

TM(ξ, ζ) =
1

2πi

∑
∗=L,T

D∗(ξ, ζ)tm∗(ζ, sgn sinϕ) (24)

D∗(ξ, ζ) =
1

ξ − (ζ cosϕ+ ζ∗(ζ) sin ϕ̃)
=

1

ξ − T∗(ζ)
(25)

The matrices tmL and tmT are known explicitly. However, their expression being heavy, it is
not reproduced here.

By taking the sum of these two operators DM and TM, called the diagonal matrix operator
and the transfer matrix operator respectively, the Fourier transform of the boundary conditions
on each face of the wedge is finally obtained. This is a system of functional equations solved by
the spectral functions : {

DM(Σ1) + TM(Σ2) = W1
ξ−να cos θinc

TM(Σ1) + DM(Σ2) = W2
ξ−να cos(ϕ−θinc)

(26)

The explicit expression of the residues in the right-hand side can be obtained by taking the
Fourier transform of the right-hand side of (16).

This system of functional equations will be resolved to obtain an evaluation of the spectral
functions.
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4.2. Method of resolution
The resolution of system (26) is done semi-analytically. This means that the solution Σj is the
sum of two functions: a function yj which is determined by an exact formula and a function Xj

which is approached numerically.

The first step is to compute yj , which is called the ”singular part”. First, the subsets {zk1}k≥0

and {zk2}k≥0 of C are defined recursively by Kamotski and Lebeau [2].
These sets are the poles of the spectral functions and correspond to the reflected (or multiply

reflected) rays. Croisille and Lebeau [1] have shown that these sets of poles of the spectral
functions are finite. Physically, this means that any incident ray on the wedge will eventually
become an outgoing ray after a certain number of reflections.

Using these sets, Croisille and Lebeau [1] have also proven the following result :

Lemma 4.1. There exist two functions y1, y2 being the finite sum of simple poles

yj(ξ) =
∑
k

akj

ξ − zkj
, akj , z

k
j ∈ C (27)

such that u1 and u2 defined by

uj(ξ) =
Wj

ξ − zj
−DM(yj)(ξ)− TM(y3−j)(ξ) (28)

are analytical on C\]−∞,−1].

The functions y1 and y2 are the singular parts of the spectral functions Σ1 and Σ2. Their
poles and residues are computed explicitly using a recursive procedure given by Croisille and
Lebeau [1].

Let us now compute the ”regular parts” X1 and X2 of the spectral functions, defined by :

Xj(ξ) = Σj(ξ)− yj(ξ) (29)

According to (28), these functions are solutions of the following system :{
DM(X1)(ξ) + TM(X2)(ξ) = u1(ξ)
TM(X1)(ξ) + DM(X2)(ξ) = u2(ξ)

(30)

The functions X1 and X2 are also analytical on C\]−∞,−1]. They are approached numerically
by a Galerkin collocation method. This new system is then evaluated at a finite number of
points ξ = b1, ..., bN , yielding the following linear system of equations :(

D T
T D

)(
X1

X2

)
=

(
U1

U2

)
(31)

where the coefficients Dlk and Tlk can be computed exactly. However, the details of this
computation are very long and technical and are not presented here. They will hopefully be the
subject of a future publication dealing with any incident and scattered wave modes.

The semi-analytical computation of the spectral functions leads to the numerical evaluation
of the diffraction coefficients, presented in the following section.
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5. Numerical results and validation
In this section, the ”acoustic limit” of the spectral functions code is taken by setting the
longitudinal wave velocities to verify cL >> cT . This means that the parameters of the elastic
model are set to simulate the diffraction of an acoustic wave.

We consider the example of a longitudinal wave incident with an angle θinc = 150o on a wedge
of angle ϕ = 300o. The wedge is represented in figure 4.

Figure 4: Incident and reflected rays on a wedge of angle ϕ = 300o, θinc = 150o.

A far-field asymptotic evaluation of the longitudinal diffraction coefficient is computed for
200 observation angles using (14) and it is compared to the exact expression of the far-field
diffraction coefficient of the scattering of a plane acoustic wave with a soft wedge, expressed by
Sommerfeld [19]. The results are shown in figure 5. Note that uniform asymptotic models of
acoustic wave scattering have been compared by Lü et al [20]. The results are shown in figure
5.

In figure 5, the continuous red line is the exact Sommerfeld solution and the blue dots are the
values obtained using the spectral functions method. There is an excellent agreement between
the results produced by each of these methods.

6. Conclusion
This communication deals with the modelling of the longitudinal wave scattered by a wedge
impinged by a longitudinal plane elastic wave. After stating the problem precisely, we have
shown that a far-field approximation of the elastic wave diffracted by a stress-free wedge can be
obtained by computing a function called the diffraction coefficient. This coefficient is expressed
in terms of two unknown functions Σ1 and Σ2 called the spectral functions.

The first numerical test has shown than this method is valid in the case of an acoustic wave.
The results in the case of the acoustic limit of the elastic code promising and a full numerical
and experimental validation is to come.
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Figure 5: Diffraction coefficient computed with the spectral functions method and with the
Sommerfeld method.

Future work on this method will include a validation of the two-dimensional diffraction of
an elastic wave by a wedge, by comparing the results of the spectral functions code to other
numerical methods, for angles both lower and higher than π. The method may then be extended
to the case of the three-dimensional diffraction of a plane elastic wave by a wedge (oblique
incidence) and to the case of a wedge with different boundary conditions.
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